SEARCH

SEARCH BY CITATION

References

  • 1
    Assmann S.M. (1993) Signal transduction in stomatal guard cells. Annual Review of Cell Biology 9, 345375.
  • 2
    Assmann S.M. & Zeiger E. (1985) Stomatal responses to CO2 in Paphiopedilum and Phragmipedium: role of the guard cell chloroplast. Plant Physiology 77, 461464.
  • 3
    Blatt M.R. (1987) Electrical characteristics of stomatal guard cells: the ionic basis of the membrane potential and the consequences of potassium chloride leakage from microelectrodes. Planta 170, 272287.
  • 4
    Blatt M.R. (1992) K+ channels of stomatal guard cells: characteristics of the inward rectifier and its control by pH. Journal of General Physiology 99, 615644.
  • 5
    Blatt M.R. & Armstrong F. (1993) K+ channels of stomatal guard cells: abscisic-acid-evoked control of the outward rectifier mediated by cytoplasmic pH. Planta 191, 330341.
  • 6
    Brearley J., Venis M.A., Blatt M.R. (1997) The effect of elevated CO2 concentration on K+ and anion channels of Vicia faba L. guard cells. Planta 203, 145154.
  • 7
    Bunce J.A. (1998) Effects of humidity on short-term responses of stomatal conductance to an increase in carbon dioxide concentration. Plant, Cell and Environment 21, 115120.
  • 8
    Davies W.J. & Mansfield T.A. (1983) Auxins and stomata. In Stomatal Function (eds E. Zeiger, G.D. Farquhar & I.R. Cowan), pp. 293–309. Stanford University Press, Stanford.
  • 9
    Drake B.G., Gonzàlez-Meler M.A., Long S.P. (1997) More efficient plants: a consequence of rising atmospheric CO2? Annual Review of Plant Physiology and Plant Molecular Biology 48, 609639.
  • 10
    Dubbe D.R., Farquhar G.D., Raschke K. (1978) Effect of abscisic acid on the gain of the feedback loop involving carbon dioxide and stomata. Plant Physiology 62, 413417.
  • 11
    Eamus D. (1991) The interaction of rising CO2 and temperatures with water use efficiency. Plant, Cell and Environment 14, 843852.
  • 12
    Edwards A. & Bowling D.J.F. (1985) Evidence for a CO2 inhibited proton extrusion pump in the stomatal cells of Tradescantia virginiana. Journal of Experimental Botany 36, 9198.
  • 13
    Esser J.E., Liao Y.-J., Schroeder J.I. (1997) Characterization of ion channel modulator effects on ABA- and malate-induced stomatal movements: strong regulation by kinase and phosphatase inhibitors, and relative insensitivity to mastoparans. Journal of Experimental Botany 48, 539550.
  • 14
    Fitzsimmons P.J. & Weyers J.D.B. (1986) Volume changes of Commelina communis guard cell protoplasts in response to K+, light and CO2. Physiologica Plantarum 66, 463468.
  • 15
    Giraudat J. (1995) Abscisic acid signaling. Current Biology 7, 232238.
  • 16
    Gotow K., Kondo N., Syono K. (1982) Effect of CO2 on volume change of guard cell protoplast from Vicia faba L (1982). Plant and Cell Physiology 23, 10631070.
  • 17
    Grabov A. & Blatt M.R. (1997) Parallel control of the inward-rectifier K+ channel by cytosolic free Ca2+ and pH in Vicia guard cells. Planta 201, 8495.
  • 18
    Hedrich R. & Marten I. (1993) Malate-induced feedback regulation of plasma membrane anion channels could provide a CO2 sensor to guard cells. EMBO Journal 12, 897901.
  • 19
    Hedrich R., Marten I., Lohse G., Dietrich P., Winter H., Lohaus G., Heldt H.-W. (1994) Malate-sensitive anion channels enable guard cells to sense changes in the ambient CO2 concentration. Plant Journal 6, 741748.
  • 20
    Hollinger D.Y. (1987) Gas exchange and dry matter allocation responses to elevation of atmospheric CO2 concentration in seedlings of three tree species. Tree Physiology 3, 193202.
  • 21
    Jarvis A.J. & Davies W.J. (1998) The coupled response of stomatal conductance to photosynthesis and transpiration. Journal of Experimental Botany 49, 399406.
  • 22
    Jarvis A.J., Mansfield T.A., Davies W.J. (1999) Stomatal behaviour, photosynthesis and transpiration under rising CO2. Plant, Cell & Environment 22, 639648.
  • 23
    Jones R.J. & Mansfield T.A. (1970) Increases in the diffusion resistances of leaves in a carbon dioxide-enriched atmosphere. Journal of Experimental Botany 21, 951958.
  • 24
    Kearns E.V. & Assmann S.M. (1993) The guard cell – environment connection. Plant Physiology 102, 711715.
  • 25
    Van Kirk C.A. & Raschke K. (1978) Release of malate from epidermal strips during stomatal closure. Plant Physiology 61, 474475.
  • 26
    Leymarie J., Vavasseur A., Lascève G. (1998) CO2 sensing in stomata of abi1–1 and abi2–1 mutants of Arabidopsis thaliana. Plant Physiology and Biochemistry 36, 539543.
  • 27
    MacRobbie E.A.C. (1983) Ionic relations of guard cells. In Stomatal Function (eds E. Zeiger, G.D. Farquhar & I.R. Cowan), pp. 125–162. Stanford University Press, Stanford.
  • 28
    Mansfield T.A., Travis A.J., Jarvis R.G. (1981) Responses to light and carbon dioxide. In Stomatal Physiology (eds P.G. Jarvis & T.A. Mansfield), pp. 119–135. Cambridge University Press, Cambridge.
  • 29
    Mansfield T.A., Hetherington A.M., Atkinson C.J. (1990) Some current aspects of stomatal physiology. Annual Review of Plant Physiology and Plant Molecular Biology 41, 5575.
  • 30
    Melis A. & Zeiger E. (1982) Chlorophyll a fluorescence transients in mesophyll and guard cells: modulation of guard cell photophosphorylation by CO2. Plant Physiology 69, 642647.
  • 31
    Miedema H. & Assmann S.M. (1996) A membrane-delimited effect of internal pH on the K+ outward rectifier of Vicia faba guard cells. Journal of Membrane Biology 154, 227237.
  • 32
    Morison J.I.L. (1983) Intercellular CO2 concentration and stomatal response to CO2. In Stomatal Function (eds E. Zeiger, G.D. Farquhar & I.R. Cowan), pp. 229–251. Stanford University Press, Stanford.
  • 33
    Morison J.I.L. (1985) Sensitivity of stomata and water use efficiency to high CO2. Plant, Cell and Environment 8, 467474.
  • 34
    Morison J.I.L. (1998) Stomatal response to increased CO2 concentration. Journal of Experimental Botany 49, 443452.
  • 35
    Mott K.A. (1988) Do stomata respond to CO2 concentrations other than intercellular? Plant Physiology 86, 200203.
  • 36
    Mott K.A. (1990) Sensing of atmospheric CO2 by plants. Plant, Cell and Environment 13, 731737.
  • 37
    Mrinalini T., Latha Y.K., Raghavendra A.S., Das V.S.R. (1982) Stimulation and inhibition by bicarbonate of stomatal opening in epidermal strips of Commelina benghalensis. New Phytology 91, 413418.
  • 38
    Niyogi K.K., Grossman A.R., Björkman O. (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10, 11211134.
  • 39
    Pei Z.-M., Ward J.M., Harper J.F., Schroeder J.I. (1996) A novel chloride channel in Vicia faba guard cell vacuoles activated by the serine/threonine kinase, CDPK. EMBO Journal 15, 65646574.
  • 40
    Poffenroth M., Green D.B., Tallman G. (1992) Sugar concentrations in guard cells of Vicia faba illuminated with red or blue light. Plant Physiology 98, 14601471.
  • 41
    Poole I., Weyers J.D.B., Lawson T., Raven J.A. (1996) Variations in stomatal density and index: implications for palaeoclimatic reconstructions. Plant, Cell and Environment 19, 705712.
  • 42
    Radoglou K.M., Aphalo P., Jarvis P.G. (1992) Response of photosynthesis, stomatal conductance and water use efficiency to elevated CO2 and nutrient supply in acclimated seedlings of Phaseolus vulgaris L. Annals of Botany 70, 257264.
  • 43
    Raschke K. (1972) Saturation kinetics of the velocity of stomatal closing in response to CO2. Plant Physiology 49, 229234.
  • 44
    Raschke K. (1975) Stomatal action. Annual Review of Plant Physiology 26, 309340.
  • 45
    Raschke K. (1979) Movements of stomata. In Physiology of Movements, Encyclopedia of Plant Physiology, n.s., Vol 7 (eds W. Haupt & M.E. Feinleib), pp. 381–441. Springer, Berlin.
  • 46
    Raschke K., Pierce M., Popiela C.C. (1976) Abscisic acid content and stomatal sensitivity to CO2 in leaves of Xanthium strumarium L. after pretreatments in warm and cold growth chambers. Plant Physiology 57, 115121.
  • 47
    Sage R.F. (1994) Acclimation of photosynthesis to increasing atmospheric CO2: the gas exchange perspective. Photosynthesis Research 39, 351368.
  • 48
    Santrucek J. & Sage R.F. (1996) Acclimation of stomatal conductance to a CO2-enriched atmosphere and elevated temperature in Chenopodium album. Australian Journal of Plant Physiology 23, 467478.
  • 49
    Schmidt C. & Schroeder J.I. (1994) Anion selectivity of slow anion channels in the plasma membrane of guard cells: large nitrate permeability. Plant Physiology 106, 383391.
  • 50
    Schwartz A., Ilan N., Grantz D.A. (1988) Calcium effects on stomatal movement in Commelina communis L.: use of EGTA to modulate stomatal response to light, KCl and CO2. Plant Physiology 87, 583587.
  • 51
    Srivastava A. & Zeiger E. (1995a) The inhibitor of zeaxanthin formation, dithithreitol, inhibits blue-light-stimulated stomatal opening in Vicia faba. Planta 196, 445449.
  • 52
    Srivastava A. & Zeiger E. (1995b) Guard cell zeaxanthin tracks photosynthetically active radiation and stomatal aperture in Vicia faba leaves. Plant, Cell and Environment 18, 813817.
  • 53
    Talbott L.D. & Zeiger E. (1993) Sugar and organic acid accumulation in guard cells of Vicia faba in response to red and blue light. Plant Physiology 102, 11631169.
  • 54
    Talbott L.D. & Zeiger E. (1996) Central roles for potassium and sucrose in guard-cell osmoregulation. Plant Physiology 111, 10511057.
  • 55
    Talbott L.D., Srivastava A., Zeiger E. (1996) Stomata from growth-chamber-grown Vicia faba have an enhanced sensitivity to CO2. Plant, Cell and Environment 19, 11881194.
  • 56
    Tallman G. & Zeiger E. (1988) Light quality and osmoregulation in Vicia guard cells: evidence for involvement of three metabolic pathways. Plant Physiology 88, 887895.
  • 57
    Travis A.J. & Mansfield T.A. (1979a) Stomatal responses to light and CO2 are dependent on KCl concentration. Plant, Cell and Environment 2, 319323.
  • 58
    Travis A.J. & Mansfield T.A. (1979b) Reversal of the CO2-responses of stomata by fusicoccin. New Phytology 83, 607614.
  • 59
    Ward J.M., Pei Z.-M., Schroeder J.I. (1995) Roles of ion channels in initiation of signal transduction in higher plants. Plant Cell 7, 833844.
  • 60
    Wardle K. & Short K.C. (1981) Responses of stomata in epidermal strips of Vicia faba to carbon dioxide and growth hormones when incubated on potassium chloride and potassium iminodiacetate. Journal of Experimental Botany 32, 303309.
  • 61
    Webb A.A.R. & Hetherington A.M. (1997) Convergence of the abscisic acid, CO2, and extracellular calcium signal transduction pathways in stomatal guard cells. Plant Physiology 114, 15571560.
  • 62
    Webb A.A.R., McAinsh M.R., Mansfield T.A., Hetherington A.M. (1996a) Carbon dioxide induces increases in guard cell cytosolic free calcium. Plant Journal 9, 297304.
  • 63
    Webb A.A.R., Taylor J.E., McAinsh M.R., Hetherington A.M. (1996b) Calcium ions as intracellular second messengers in plants. Advances in Botanic Research 22, 4596.
  • 64
    Wong S.C., Cowan I.R., Farquhar G.D. (1979) Stomatal conductance correlates with photosynthetic capacity. Nature 282, 424426.
  • 65
    Woodward F.I. & Kelly C.K. (1995) The influence of CO2 concentration on stomatal density. New Phytology 131, 311327.
  • 66
    Zeiger E. & Zhu J. (1998) Role of zeaxanthin in blue light photoreception and the modulation of light–CO2 interactions in guard cells. Journal of Experimental Botany 49, 433442.
  • 67
    Zhu L., Talbott L.D., Zeiger E. (1998) The stomatal response to CO2 is linked to changes in guard cell zeaxanthin. Plant, Cell and Environment 21, 813820.