SEARCH

SEARCH BY CITATION

References

  • Ackerly D.D. & Bazzaz F.A. (1995) Plant growth and reproduction along CO2 gradients: non-linear responses and implications for community change. Global Change Biology 1, 199207.
  • Anderson L.J., Maherali H., Johnson H.B., Polley H.W. & Jackson R.B. (2001) Gas exchange and photosynthetic acclimation over subambient to elevated CO2 in a C3-C4 grassland. Global Change Biology 7, 693707.DOI: 10.1046/j.1354-1013.2001.00438.x
  • Barnola J.M., Raynaud D., Dorotkevich Y.S. & Lorius C.D. (1987) Vostok ice core provides 160,000 year record of atmospheric CO2. Nature 329, 408414.
  • Beerling D.J. & Woodward F.I. (1993) Ecophysiological responses of plants to global environmental change since the Last Glacial Maximum. New Phytologist 125, 641648.
  • Bounoua L., Collatz G.J., Sellers P.J., et al. (1999) Interactions between vegetation and climate: radiative and physiological effects of doubled atmospheric CO2. Journal of Climate 12, 309324.
  • Bunce J.A. (2001) Direct and acclimatory responses of stomatal conductance to elevated carbon dioxide in four herbaceous crop species in the field. Global Change Biology 7, 323331.
  • Von Caemmerer S. & Farquhar G.D. (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153, 376387.
  • Chen X.M., Begonia G.B. & Hesketh J.D. (1995) Soybean stomatal acclimation to long-term exposure to CO2-enriched atmospheres. Photosynthetica 31, 5157.
  • DeLucia E.H. & Schlesinger W.H. (1991) Resource-use efficiency and drought tolerance in adjacent Great Basin and Sierran plants. Ecology 72, 5158.
  • Drake B.G., Gonzalez-Meler M.A. & Long S.P. (1997) More efficient plants: a consequence of rising atmospheric CO2? Annual Review of Plant Physiology and Plant Molecular Biology 48, 609639.
  • Ehleringer J.R., Cerling T.E. & Helliker B.R. (1997) C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112, 285299.DOI: 10.1007/s004420050311
  • Field C.B., Jackson R.B. & Mooney H.A. (1995) Stomatal responses to increased CO2: implications from the plant to global scale. Plant, Cell and Environment 18, 12141225.
  • Givnish T.J. (1986) Optimal stomatal conductance, allocation of energy between leaves and roots, and the marginal cost of transpiration. In On the Economy of Plant Form and Function (ed. T. J. Givnish), pp. 171213. Cambridge University Press, Cambridge, UK.
  • Harley P.C., Weber J.A. & Gates D.M. (1985) Interactive effects of light, leaf temperature, CO2, and O2 on photosynthesis in soybean. Planta 165, 249263.
  • Henderson-Sellers A., McGuffie K. & Cross C. (1995) Sensitivity of global climate model simulations to increased stomatal resistance and CO2 increases. Journal of Climate 8, 17381756.
  • Hsiao T.C. & Jackson R.B. (1999) Interactive effects of water stress and elevated CO2 on growth, photosynthesis, and water use efficiency. In Carbon Dioxide and Environmental Stress (eds Y. Luo & H. A. Mooney), pp. 331. Academic Press, San Diego, CA, USA.
  • Jackson R.B., Sala O.E., Field C.B. & Mooney H.A. (1994) CO2 alters water use, carbon gain, and yield for the dominant species in a natural grassland. Oecologia 98, 257262.
  • Jackson R.B., Sala O.E., Paruelo J.M. & Mooney H.A. (1998) Ecosystem water fluxes for two grasslands in elevated CO2: a modeling analysis. Oecologia 113, 537546.
  • Jackson R.B., Sperry J.S. & Dawson T.E. (2000) Root water uptake and transport: using physiological processes in global predictions. Trends in Plant Science 5, 482488.
  • Jacob J., Greitner C. & Drake B.G. (1995) Acclimation of photosynthesis in relation to Rubisco and non-structural carbohydrate contents and in situ carboxylase activity in Scirpus olneyi at elevated CO2 in the field. Plant, Cell and Environment 18, 875884.
  • Jarvis A.J., Mansfield T.A. & Davies W.J. (1999) Stomatal behaviour, photosynthesis and transpiration under rising CO2. Plant, Cell and Environment 22, 639648.DOI: 10.1046/j.1365-3040.1999.00407.x
  • Johnson H.B., Polley H.W. & Mayeux H.S. (1993) Increasing CO2 and plant–plant interactions: effects on natural vegetation. Vegetatio 104/105, 157170.
  • Johnson H.B., Polley H.W. & Whitis R.P. (2000) Elongated chambers for field studies across atmospheric CO2 gradients. Functional Ecology 14, 388396.DOI: 10.1046/j.1365-2435.2000.00435.x
  • Jones H.G. (1985) Partitioning stomatal and non-stomatal limitations to photosynthesis. Plant, Cell and Environment 8, 95104.
  • Jones H.G. (1993) Drought tolerance and water-use efficiency. In Water Deficits: Plant Responses from Cell to Community (eds J. A. C. Smith & H. Griffiths), pp. 193204. Bios Scientific Publishers, Oxford, UK.
  • Jouzel J., Barkov N.I., Barnola J.M., et al. (1993) Extending the Vostok ice-core record of paleoclimate to the penultimate glacial period. Nature 364, 407412.
  • Knapp A.K., Cocke M., Hamerlynck E.P. & Owensby C.E. (1994) Effect of elevated CO2 on stomatal density and distribution in a C4 grass and a C3 forb under field conditions. Annals of Botany 74, 595599.
  • Knapp A.K., Hamerlynck E.P., Ham J.M. & Owensby C.E. (1996) Responses in stomatal conductance to elevated CO2 in 12 grassland species that differ in growth form. Vegetatio 125, 3141.
  • Kurschner W.M., Wagner F., Visscher E.H. & Visscher H. (1997) Predicting the response of leaf stomatal frequency to a future CO2 enriched atmosphere: constraints from historical observations. Geologische Rundschau 86, 512517.DOI: 10.1007/s005310050158
  • Lee T.D., Tjoelker M.G., Ellsworth D.S. & Reich P.B. (2001) Leaf gas exchange responses of 13 prairie grassland species to elevated CO2 and increased nitrogen supply. New Phytologist 150, 405418.
  • Lodge R.J., Dijkstra P., Drake B.G. & Morison J.I.L. (2001) Stomatal acclimation to increased CO2 in a Florida scrub oak species Quercus myrtifolia Willd. Plant, Cell and Environment 24, 7788.
  • Luo Y.Q. & Reynolds J.F. (1999) Validity of extrapolating field CO2 experiments to predict carbon sequestration in natural ecosystems. Ecology 80, 15681583.
  • Luo Y.Q., Sims D.A. & Griffin K.L. (1998) Nonlinearity of photosynthetic responses to growth in rising atmospheric CO2: an experimental and modeling study. Global Change Biology 4, 173183.
  • Malone S.R., Mayeux H.S., Johnson H.B. & Polley H.W. (1993) Stomatal density and aperture length in four plant species grown across a subambient CO2 gradient. American Journal of Botany 80, 14131418.
  • Morgan J.A., Hunt H.W., Monz C.A. & Lecain D.R. (1994) Consequences of growth at two carbon dioxide concentrations and two temperatures for leaf gas exchange in Pascopyrum smithii (C3) and Bouteloua gracilis (C4). Plant, Cell and Environment 17, 10231033.
  • Morison J.I.L. (1998) Stomatal response to increased CO2 concentration. Journal of Experimental Botany 49, 443452.DOI: 10.1093/jexbot/49.suppl_1.443
  • Niklaus P.A., Spinnler D. & Korner C. (1998) Soil moisture dynamics of calcareous grassland under elevated CO2. Oecologia 117, 201208.DOI: 10.1007/s004420050649
  • Nobel P.S. (1991) Physicochemical and Environmental Plant Physiology. Academic Press, New York, USA.
  • Owensby C.E., Ham J.M., Knapp A.K. & Auen L.M. (1999) Biomass production and species composition change in a tall grass prairie ecosystem after long-term exposure to elevated atmospheric CO2. Global Change Biology 5, 497506.DOI: 10.1046/j.1365-2486.1999.00245.x
  • Parkhurst D.F. (1994) Diffusion of CO2 and other gases inside leaves. New Phytologist 126, 449479.
  • Pollard D. & Thompson S.L. (1995) Use of a land-surface-transfer scheme in a global climate model – the response to doubling stomatal resistance. Global Planetary Change 10, 129161.
  • Polley H.W., Johnson H.B., Marino B.D. & Mayeux H.S. (1993) Increase in C3 plant water use efficiency and biomass over glacial to present CO2 concentrations. Nature 361, 6164.
  • Polley H.W., Johnson H.B. & Mayeux H.S. (1992) Carbon dioxide and water fluxes of C3 annuals and C3 and C4 perennials at subambient CO2 concentrations. Functional Ecology 6, 693703.
  • Potvin C., Lechowicz M.J. & Tardif S. (1990) The statistical analysis of ecophysiological response curves obtained from experiments involving repeated measures. Ecology 71, 13891400.
  • Reid C.D. & Fiscus E.L. (1998) Effects of elevated [CO2] and/or ozone on limitations to CO2 assimilation in soybean (Glycine max). Journal of Experimental Botany 49, 885895.
  • Sage R.F. (1995) Was low atmospheric CO2 during the Pleistocene a limiting factor for the origin of agriculture? Global Change Biology 1, 93106.
  • Sage R.F. & Coleman J.R. (2001) Effects of low atmospheric CO2 on plants: more than a thing of the past. Trends in Plant Science 6, 1824.
  • Sage R.F. & Reid C.D. (1992) Photosynthetic acclimation to subambient CO2 (20 Pa) in the C3 annual Phaseolus vulgaris L. Photosynthetica 27, 605617.
  • Šantrüček J. & Sage R.F. (1996) Acclimation of stomatal conductance to a CO2-enriched atmosphere and elevated temperature in Chenopodium album. Australian Journal of Plant Physiology 23, 467478.
  • Sellers P.J., Bounoua L., Collatz G.J., et al. (1996) Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science 271, 14021406.
  • Smith S.D., Huxman T.E., Zitzer S.F., Charlet T.N., Housman D.C., Coleman J.S., Fenstermaker L.K., Seemann J.R. & Nowak R.S. (2000) Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408, 7982.
  • Tissue D.T., Griffin K.L., Thomas R.B. & Strain B.R. (1995) Effects of low and elevated CO2 and C3 and C4 annuals II. Photosynthesis and leaf biochemistry. Oecologia 101, 2128.
  • Tuba Z., Szente K. & Koch J. (1994) Response of photosynthesis, stomatal conductance, water use efficiency and production to long-term elevated CO2 in winter wheat. Journal of Plant Physiology 144, 661668.
  • Wand S.J.E., Midgley G.F., Jones M.H. & Curtis P.S. (1999) Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions. Global Change Biology 5, 723741.
  • Ward J.K., Antonovics J., Thomas R.B. & Strain B.R. (2000) Is atmospheric CO2 a selective agent on model C3 annuals? Oecologia 123, 330341.
  • Williams M.H. & Green P.B. (1988) Sequential scanning electron microspcopy of a growing plant meristem. Protoplasma 147, 7779.
  • Wong S.C., Cowan I.R. & Farquhar G.D. (1979) Stomatal conductance correlates with photosynthetic capacity. Nature 282, 424426.
  • Woodward F.I. (1987) Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature 327, 617618.