SEARCH

SEARCH BY CITATION

References

  • Avigad G. (1982) Sucrose and other dissacharides. In Encyclopedia of Plant Physiology (eds T.A.Lowus & W.Tanner) pp. 217347. Springer, Heidelberg, Germany.
  • Bates L.S., Waldren R.P. & Teare I.D. (1973) Rapid determination of proline. Plant Soil 39, 205207.
  • Birkenberg P.R. & Brenner M.L. (1984) A one-step enzymatic assay for sucrose with sucrose phosphorylase. Analytical Biochemistry 142, 556561.
  • Borisjuk L., Walenta S., Weber H., Muellerklieser W. & Wobus U. (1998) High resolution histographical mapping of glucose concentrations in developing cotyledons of Vicia faba in relation to mitotic activity and storage processes – glucose as a possible developmental trigger. Plant Journal 15, 583591.
  • Dancer J., Hatzfeld W.D. & Stitt M. (1990) Cytosolic cycles regulate the turnover of sucrose in heterotrophic cell-suspension cultures of Chenopodium rubrum L. Planta 182, 223231.
  • Doehlert D.C. (1987) Substrate inhibition of maize endosperm sucrose synthase by fructose and its interaction with glucose inhibition. Plant Science 52, 153157.
  • Fernie A.R., Roessner U. & Geigenberger P. (2001a) The sucrose analog palatinose leads to a stimulation of sucrose degradation and starch synthesis when supplied to discs of growing potato tubers (Solanum tuberosum). Plant Physiology 125, 19671977.
  • Fernie A.R., Roessner U., Trethewey R.N. & Willmitzer L. (2001b) The contribution of plastidial phosphoglucomutase to the control of starch synthesis within the potato tuber. Planta 213, 418426.
  • Geigenberger P. & Stitt M. (1991) A ‘futile’ cycle of sucrose synthesis and degradation is involved in regulating carbon partitioning between sucrose, starch and respiration in cotyledons of germinating Ricinus communis L. seedlings when phloem transport is inhibited. Planta 185, 8190.
  • Geigenberger P. & Stitt M. (1993) Sucrose synthase catalyses a readily reversible reaction in vivo in developing potato tubers and other plant tissues. Planta 189, 329339.
  • Geigenberger P., Fernie A.R., Gibon Y., Christ M. & Stitt M. (2000) Metabolic activity decreases as an adaptive response to low internal oxygen in growing potato tubers. Biological Chemistry 381, 723740.
  • Geigenberger P., Geiger M. & Stitt M. (1998a) High-temperature perturbation of starch synthesis is attributable to inhibition of ADP-glucose pyrophosphorylase by decreased levels of glycerate-3-phosphate in growing potato tubers. Plant Physiology 117, 13071316.
  • Geigenberger P., Hajirezaei M., Geiger M., Deiting U., Sonnewald U. & Stitt M. (1998b) Overexpression of pyrophosphatase leads to increased sucrose degradation and starch synthesis, increased activities of enzymes for sucrose-starch interconversion, and increased levels of nucleotides in growing potato tubers. Planta 205, 428437.
  • Geigenberger P., Lerchl J., Stitt M. & Sonnewald U. (1996) Phloem-specific expression of pyrophosphatase inhibits long distance transport of carbohydrates and amino acids in tobacco plants. Plant Cell and Environment 19, 4355.
  • Geigenberger P., Merlo L., Reimholz R. & Stitt M. (1994) When growing potato tubers are detached from their mother plant there is a rapid inhibition of starch synthesis, involving inhibition of ADP-glucose pyrophosphorylase. Planta 193, 502518.
  • Geigenberger P., Müller-Röber B. & Stitt M. (1999a) Contribution of adenosine 5′-diphosphoglucose pyrophosphorylase to the control of starch synthesis is decreased by water stress in growing potato tubers. Planta 209, 338345.
  • Geigenberger P., Reimholz R., Deiting U., Sonnewald U. & Stitt M. (1999b) Decreased expression of sucrose phosphate synthase strongly inhibits the water stress-induced synthesis of sucrose in growing potato tubers. Plant Journal 19, 119129.
  • Geigenberger P., Reimholz R., Geiger M., Merlo L., Canale V. & Stitt M. (1997) Regulation of sucrose and starch metabolism in potato tubers in response to short term water deficit. Planta 201, 502518.
  • Geigenberger P., Stamme C., Tjaden J., Schulz A., Quick P.W., Betsche T., Kersting H.J. & Neuhaus H.E. (2001) Tuber physiology and properties of starch from tubers of transgenic potato plants with altered plastidic adenylate transporter activity. Plant Physiology 125, 16671678.
  • Geiger M., Stitt M. & Geigenberger P. (1998) Metabolism in slices from growing potato tubers responds differently to addition of glucose and sucrose. Planta 206, 234244.
  • Grimmer C., Bachfischer T. & Komor E. (1999) Carbohydrate partitioning into starch in leaves of Ricinus communis L. grown under elevated CO2 is controlled by sucrose. Plant, Cell and Environment 22, 12751280.
  • Hare P.D., Cress W.A. & Van Staden J. (1998) Dissecting the role of osmolyte accumulation during stress. Plant, Cell and Environment 21, 535553.
  • Hnilo J. & Okita T. (1989) Mannose feeding and its effect on starch synthesis in developing potato tuber discs. Plant, Cell Physiology 30, 10071010.
  • Huber S.C., Huber J.L., Liao P.C., Gage D.A., McMichael R.W. Jr, Choury P.S., Hannah L.C. & Koch K.C. (1996) Phosphorylation of serine-15 of maize sucrose synthase. Plant Physiology 112, 793802.
  • Kruger N.J. (1997) Carbohydrate synthesis and degradation. In: Plant Metabolism (eds D.T.Dennis, D.H.Turpin, D.DLefebvre & D.B. Layzell) pp. 83104. Longman, Harlow, UK.
  • Loef I., Stitt M. & Geigenberger P. (1999) Orotate leads to a specific increase in uridine nucleotide levels and a stimulation of sucrose degradation and starch synthesis in discs from growing potato tubers. Planta 200, 314323.
  • Loef I., Stitt M. & Geigenberger P. (2001) Increased levels of adenine nucleotides modify the interaction between starch synthesis and respiration when adenine is supplied to discs from growing potato tubers. Planta 212, 782791.
  • Marshall I., Sidebottom C., Debet M., Martin C., Smith A.M. & Edwards A. (1996) Identification of the major starch synthase in the soluble fraction of potato tubers. Plant Cell 8, 11211135.
  • Merlo L., Geigenberger P., Hajirezaei M. & Stitt M. (1993) Changes of carbohydrates, metabolites and enzyme activities in potato tubers during development, and within a single tuber along a stolen-apex gradient. Journal of Plant Physiology 142, 392402.
  • Roessner U., Luedemann A., Brust D., Fiehn O., Linke T. & Willmitzer L. & Fernie A.R. (2001) Metabolic profiling and phenotyping of genetically and environmentally modified plant systems. Plant Cell 13, 1129.
  • Roosens N.H., Willem R., Li Y., Verbruggen I., Biesemans M. & Jacobs M. (1999) Proline metabolism in the wild type and in a salt-tolerant mutant of Nicotiana plumbaginifolia studied by 13C-Nuclear Magnetic Resonance Imaging. Plant Physiology 121, 12811290.
  • Silverstein R., Voet J., Reed D. & Abeles R.H. (1967) Purification and mechanism of action of sucrose phosphorylase. Journal of Biological Chemistry 242, 13381345.
  • Smeekens S. (2000) Sugar-induced signal transduction in plants. Annual Review of Plant Physiology and Plant Molecular Biology 51, 4981.
  • Sonnewald U., Hajiraezaei M.R., Kossmann J., Heyer A., Trethewey R.N. & Willmitzer L. (1997) Expression of a yeast invertase in the apoplast of potato tubers increases tuber size. Nature Biotechnology 15, 794797.
  • Sowokinos J.R. & Preiss J. (1982) Phosphorylases in Solanum tuberosum. III. Purification, physical and catalytic properties of ADPglucose pyrophosphorylase in potatoes. Plant Physiology 69, 14591466.
  • Stryer L.M. (1988) Biochemistry. Verlag Chemie, Weinheim, Germany.
  • Tjaden J., Möhlmann T., Kampfenkel K., Henrichs G. & Neuhaus H.E. (1998) Altered plastidic ATP/ADP-transporter activity influences potato (Solanum tuberosum L.) tuber morphology, yield and composition of tuber starch. Plant Journal 16, 531540.
  • Trethewey R.N., Fernie A.R., Bachmann A., Fleischer-Notter H., Geigenberger P. & Willmitzer L. (2001) Expression of a bacterial sucrose phosphorylase in potato tubers results in a glucose-independent induction of glycolysis. Plant, Cell and Environment 24, 357365.
  • Trethewey R.N., Geigenberger P., Henning A., Fleischer-Notter H., Müller-Röber B. & Willmitzer L. (1999a) Induction of glycolysis correlates with enhanced hydrolysis of sucrose. Plant, Cell and Environment 22, 7179.
  • Trethewey R.N., Riesmeier J.W., Willmitzer L., Stitt M. & Geigenberger P. (1999b) Tuber specific expression of a yeast invertase and a bacterial glucokinase in potato leads to an activation of sucrose phosphate synthase and the creation of a sucrose futile cycle. Planta 208, 227238.
  • Trethewey R.N., Geigenberger P., Riedel K., Hajirezaei M.R., Sonnewald U., Stitt M., Riesmeier J.W. & Willmitzer L. (1998) Combined expression of glucokinase and invertase in potato tubers leads to a dramatic reduction in starch accumulation and a stimulation of glycolysis. Plant Journal 15, 109118.
  • Weber H., Heim U., Golombek S., Borisjuk L., Manteuffel R. & Wobus U. (1998) Expression of a yeast derived invertase in developing cotyledons of Vicia narbonensis alters the carbohydrate state and affects storage functions. Plant Journal 16, 163172.
  • Winter H., Robinson D.G. & Heldt H.W. (1993) Subcellular volumes and metabolite concentrations in barley leaves. Planta 191, 180190.