SEARCH

SEARCH BY CITATION

References

  • Aasamaa K., Sober A. & Rahi M. (2001) Leaf anatomical characteristics associated with shoot hydraulic conductance, stomatal conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees. Australian Journal of Plant Physiology 28, 765774.
  • Becker P., Tyree M.T. & Tsuda M. (1999) Hydraulic conductances of angiosperms versus conifers: similar transport efficiency at the whole-plant level. Tree Physiology 19, 445452.
  • Boyce C.K. & Knoll A.H. (2002) Evolution of developmental potential and the multiple independent origins of leaves in Paleozoic vascular plants. Paleobiology 28, 6999.
  • Canny M. (1995) Apoplastic water and solute movement – new rules for an old space. Annual Review of Plant Physiology and Plant Molecular Biology 46, 215236.
  • Cuenca R.H. (1989) Irrigation System Design: an Engineering Approach. Prentice Hall, Englewood Cliffs, NJ, USA.
  • Esau K. (1965) Plant Anatomy. John Wiley & Sons, Inc, New York, USA.
  • Franks P.J., Cowan I.R. & Farquhar G.D. (1998) A study of stomatal mechanics using the cell pressure probe. Plant, Cell and Environment 21, 91100.
  • Jeje A.A. (1985) The flow and dispersion of water in the vascular network of dicotylendonous leaves. Biorheology 22, 285302.
  • Landsberg J.J. & Fowkes N.D. (1978) Water movement through plant roots. Annals of Botany 42, 493508.
  • Marschner H. (1995) Mineral Nutrition of Higher Plants. Academic Press, San Diego, CA, USA.
  • Martre P., Durand J. & Cochard H. (2000) Changes in axial hydraulic conductivity along elongating leaf blades in relation to xylem maturation in tall fescue. New Phytologist 146, 235247.
  • Nardini A. & Salleo S. (2000) Limitation of stomatal conductance by hydraulic traits: sensing or preventing xylem cavitation? Trees 15, 1424.
  • Nardini A., Tyree M.T. & Salleo S. (2001) Xylem cavitation in the leaf of Prunus laurocerasus L. and its impact on leaf hydraulics. Plant Physiology 125, 17001709.
  • Nelson T. & Dengler N. (1997) Leaf vascular pattern formation. Plant Cell 9, 11211135.
  • Niklas K. (1999) A mechanical perspective on foliage leaf form and function. New Phytologist 143, 1931.
  • Roth-Nebelsick A., Uhl D., Mosbrugger V. & Kerp H. (2001) Evolution and function of leaf architecture: a review. Annals of Botany 87, 533566.
  • Salleo S., Nardini A. & Lo Gullo M. (1997) Is sclerophylly of Mediterranean evergreens an adaptation to drought? New Phytologist 135, 603312.
  • Siso S., Camarero J.J. & Gil-Pelegrin E. (2001) Relationship between hydraulic resistance and leaf morphology in broadleaf Quercus species: a new interpretation of leaf lobation. Trees Structure and Function 15, 341345.
  • Specht R.L. & Specht A. (1989) Canopy structure in Eucalyptus-dominated communities in Australia along climatic gradients. Acta Oecologica 10, 191213.
  • Steudle E. & Tyerman S.D. (1983) Determination of permeability coefficients, reflection coefficients, and hydraulic conductivity of Chara corralina using the pressure probe: effects of solute concentration. Journal of Membrane Biology 75, 8596.
  • Yang S. & Tyree M.T. (1994) Hydraulic architecture of Acer saccharum and A. rubrum: comparison of branches to whole trees and the contribution of leaves to hydraulic resistance. Journal of Experimental Botany 45, 179186.
  • Zwieniecki M.A., Hutyra L., Thompson M.V. & Holbrook N.M. (2000) Dynamic changes in petiole specific conductivity in red maple (Acer rubrum L.), tulip tree (Liriodendron tulipifera L.) and northern fox grape (Vitis labrusca L.). Plant, Cell and Environment 23, 407414.