SEARCH

SEARCH BY CITATION

REFERENCES

  • Albrecht C., Geurts R. & Bisseling T. (1999) Legume nodulation and mycorrhizae formation; two extremes in host specificity meet. European Molecular Biology Organisation Journal 18, 281288.
  • Alexandre G., Jacoud C., Faure D. & Bally R. (1996) Population dynamics of a motile and a non-motile Azospirillum lipoferum strain during rice root colonisation and motility variation in the rhizosphere. FEMS Microbiology Ecology 19, 271278.
  • Alström S. (1991) Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterization with rhizosphere pseudomonads. Journal of Genetic Applied Microbiology 37, 495501.
  • Anderson A.J., Habibzadegah-tari P. & Tepper C.S. (1988) Molecular studies on the role of a root surface agglutin in adherence and colonisation by Pseudomonas putida. Applied Environmental Microbiology 54, 375380.
  • Arshad M. & Frankenberger W.T. (1991) Microbial production of plant hormones. Plant and Soil 133, 18.
  • Bashan Y. & Holguin G. (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth promoting bacteria) and PGPB. Soil Biology and Biochemistry 30, 12251228.
  • Bayliss C., Bent E., Culham D.E., MacLellan S., Clarke A.J., Brown G.L. & Wood J.M. (1997) Bacterial genetic loci implicated in the Pseudomonas putida GR12–2R3 – canola mutualism: identification of an exudate-inducible sugar transporter. Canadian Journal of Microbiology 43, 809818.
  • Bender C.L., Alarcon-Chaidez F. & Gross D.C. (1999) Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthesases. Microbiology and Molecular Biology Reviews 63, 266292.
  • Binns A.N. (1994) Cytokinin accumulation and action: biochemical, genetic, and molecular approaches. Annual Reviews of Plant Physiology and Plant Molecular Biology 45, 173196.
  • Bowling S.A., Clarke J.D., Liu Y., Klessig D.F. & Dong X. (1997) The cpr5 mutant of Arabidopsis expresses both NPR-1-dependent and NRP-1-independent resistance. Plant Cell 9, 15731584.
  • Brandl M.T. & Lindow S.E. (1996) Cloning and characterization of a locus encoding an indolepyruvate decarboxylas involved in indole-3-acetic acid synthesis in Erwinia herbicola. Applied Environmental Microbiology 62, 41214128.
  • Brandl M.T. & Lindow S.E. (1997) Environmental signals modulate the expression of an indole-3-acetic acid Biosynthetic gene in Erwinia herbicola. Molecular Plant–Microbe Interaction 10, 499505.
  • Brandl M., Clark E.M. & Lindow S.E. (1996) Characterization of the indole-3-acetic acid (IAA) biosynthetic pathway in an epiphytic strain of Erwinia herbicola and IAA production in vitro. Canadian Journal of Microbiology 42, 586592.
  • Broughton W.J. & Perret X. (1999) Genealogy f legume-Rhizobium symbioses. Current Opinion in Plant Biology 2, 305311.
  • Campbell B.G. & Thomson J.A. (1996) 1-Aminocyclopropane-1-carboxylate deaminase genes from Pseudomonas strains. FEMS Microbiology Letters 138, 207210.
  • Chiang S.L. & Mekalanos J.J. (1998) Use of signature-tagged transposon mutagenesis to identify Vibrio cholerae genes critical for colonisation. Molecular Microbiology 27, 797805.
  • Chin-A-Woeng T.F.C., Bloemberg G.V., Mulders I.H.M., Dekkers L.C. & Lugtenberg B.J.J. (2000) Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Molecular Plant–Microbe Interaction 13, 13401345.
  • Costacurta A. & Vanderleyden J. (1995) Synthesis of phytohormones by plant-associated bacteria. Critical Reviews in Microbiology 21, 118.
  • Curl E.A. & Truelove B. (1986) The Rhizosphere. Springer-Verlag, Berlin, Germany.
  • Currier W.C. & Strobel G.A. (1977) Chemotaxis of Rhizobium spp. to a glycoprotein produced by birdsfoot trefoil roots. Science 196, 434436.
  • De Meyer G., Capieau K., Audenaert K., Buchala A., Métraux J.-P. & Höfte M. (1999) Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean. Molecular Plant–Microbe Interaction 12, 450458.
  • De Weger L.A., Van Der Bij A.J., Dekkers L.C., Simons M., Wijffelman C.A. & Lugtenberg B.J.J. (1995) Colonisation of the rhizosphere of crops plants by plant-beneficial pseudomonads. FEMS Microbiology Ecology 17, 221228.
  • Dekkers L.C., Bloemendaal C.J.P., De Weger L.A., Wijffelman C.A., Spaink H.P. & Lugtenberg B.J.J. (1998a) A two-component system plays an important role in the root-colonising ability of Pseudomonas fluorescens strain WCS365. Molecular Plant–Microbe Interaction 11, 4556.
  • Dekkers L.C., Phoelich C.C., Fits L.V.D. & Lugtenberg B.J.J. (1998b) A site-specific recombinase is required for competitive root colonisation of Pseudomonas fluorescens WCS365. Proceedings of National Academy of Science USA 95, 70517056.
  • Delaney T.P. (1997) Genetic dissection of acquired resistance to disease. Plant Physiology 113, 512.
  • Delaney T.P., Uknes S., Vernooij B., et al. (1994) A central role of salicylic acid in plant disease resistance. Science 266, 12471250.
  • Dénarié J., Debelle F. & Prome J.C. (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: signalling molecules mediating recognition and morphogenesis. Annual Review of Biochemistry 65, 503535.
  • Dubeikovsky A.N., Mordukhova E.A., Kochetkov V.V., Polikarpova F.Y. & Boronin A.M. (1993) Growth promotion of blackcurrant softwood cuttings by recombinant strain Pseudomonas fluorescens BSP53a synthesizing an increased amount of indole-3-acetic acid. Soil Biology and Biochemistry 25, 12771281.
  • Duijff B.J., Gianinazzi-Pearson V. & Lemanceau P. (1997) Involvement of the outer membrane lipopolysaccharides in the endophytic colonisation of tomato roots by biocontrol Pseudomo nas fluorescens strain WCS417r. New Phytologist 135, 325334.
  • Durner J., Shah J. & Klessig D.F. (1997) Salicylic acid and disease resistance in plants. Trends in Plant Science 2, 266274.
  • Dybvig K. (1993) DNA rearrangements and phenotypic switching in prokaryotes. Molecular Microbiology 10, 465471.
  • Epple P., Apel K. & Bohlmann H. (1995) An Arabidopsis thaliana thionin gene is inducible via a signal transduction pathway different from that for pathogenesis-related proteins. Plant Physiology 109, 813820.
  • Felix G., Duran J.D., Volko S. & Boller T. (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant Journal 18, 265276.
  • Fuqua W.C., Winans S.C. & Greenberg E.P. (1994) Quorum sensing in Bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. Journal of Bacteriology 176, 269275.
  • Glick B.R., Penrose D.M. & Li J. (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. Journal of Theoretical Biology 190, 6368.
  • Glickmann E., Gardan L., Jacquet S., Hussain S., Elasri M., Petit A. & Dessaux Y. (1998) Auxin production is a common feature of most pathovars of Pseudomonas syringae. Molecular Plant–Microbe Interaction 11, 156162.
  • Gòmez-Gòmez L. & Boller T. (2000) FLS2: a LRR receptor-like kinase involved in recognition of the flagellin elicitor in Arabidopsis. Molecular Cell 5, 120.
  • Gòmez-Gòmez L. & Boller T. (2002) Flagellin perception: a paradigm for innate immunity. Trends in Plant Science 7, 251256.
  • Gòmez-Gòmez L., Felix G. & Boller T. (1999) A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. The Plant Cell 18, 277284.
  • Gruen H.E. (1965) The production of indolacetic acid by Phycomyces blakesleeanus. Mycologia 57, 683695.
  • Hirsch A.M., Fang Y., Asad S. & Kapulnik Y. (1997) The role of phytohormones in plant-microbe symbioses. Plant and Soil 194, 171184.
  • Holland M.A. (1994) PPFMs and other covert contaminants: is there more to plant physiology than just plant? Annual Reviews of Plant Physiology and Plant Molecular Biology 45, 197209.
  • Holland M.A. (1997) Occam's razor applied to hormonology. Plant Physiology 115, 865868.
  • Hungria M. & Stacey G. (1997) Molecular signals exchanged between host plants and rhizobia: basic aspects and potential application in agriculture. Soil Biology and Biochemistry 29, 819830.
  • Hunt M.D. & Ryals J.A. (1996) Systemic acquired resistance signal transduction. Critical Reviews in Plant Sciences 15, 583606.
  • Kaiser D. & Losick R. (1993) How and why bacteria talk to each other. Cell 73, 873885.
  • Kakimoto T. (1998) Cytokinin signalling. Current Opinion in Plant Biology 1, 399403.
  • Kapulnik Y., Okon Y. & Henis Y. (1985) Changes in root morphology of wheat caused by Azospirillum inoculation. Canadian Journal of Microbiology 31, 881887.
  • Kloepper J.W. & Schroth M.N. (1978) Plant growth-promoting rhizobacteria on radishes.In Proceedings of the 4th International Conference on Plant Pathogenic Bacteria Vol. 2, pp. 879882. Station de Pathologie Végétale et de Phytobactériologie. Tours, France.
  • Kloepper J.W., Lifshitz R. & Zablotowicz R.M. (1989) Free-living bacterial inocula for enhancing crop productivity. TIBTECHNICAL 7, 3944.
  • Knoester M., Pieterse C.M., Bol J.F. & Loon L.C.V. (1999) Systemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signalling at the site of application. Molecular Plant–Microbe Interaction 12, 720727.
  • Kobayashi M., Izui H., Nagasawa T. & Yamada H. (1993) Nitrilase in biosynthesis of the plant hormone indole-3-acetic acid from indole-3-acetonitrile: cloning of the Alcaligenes gene and site-directed mutagenesis of cysteine residues.Proceedings of the National Academy of Sciences of the USA 90, 247.
  • Kucey R.M.N. (1988) Plant growth-altering effects of Azospirillum brasilense and Bacillus C-11–25 on two wheat cultivars. Journal of Applied Bacteriology 64, 187196.
  • Lam S.T., Ellis D.M. & Ligon J.M. (1990) Genetic approaches for studying rhizosphere colonisation. Plant and Soil 129, 1118.
  • Lebuhn M., Heulin T. & Hartmann A. (1997) Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiology Ecology 22, 325334.
  • Leeman M., Van Pelt J.A., Den Ouden F.M., Heinsbroek M., Bakker P.A.H.M. & Schippers B. (1995) Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to Fusarium wilt, using a novel bioassay. European Journal of Plant Pathology 101, 655664.
  • Liu S.T., Perry K.L., Schardl C.L. & Kado C.I. (1982) Agrobacterium Ti plasmid indolacetic acid gene is required for crown gall oncogenesis.Proceedings of the National Academy of Sciences of the USA 79, 28122816.
  • Losick R. & Kaiser D. (1997) Why and how bacteria communicate. Scientific American 276, 6873.
  • Lugtenberg B.J.J., Dekkers L. & Bloemberg G.V. (2001) Molecular determinanrs of rhizosphere colonization by Pseudomonas. Annual Review of Phytopathology 39, 461490.
  • Lugtenberg B.J.J., Van Der Bij A., Bloemberg G., et al. (1996) Molecular basis of rhizosphere colonisation by Pseudomonas bacteria. In Biology of Plant–Microbe Interactions (eds G.Stacey, B.Mullin, & P.M.Gresshoff), pp. 433440. International Society for Molecular Plant–Microbe Interactions, St. Paul, MN, USA.
  • Manulis S., Haviv-Chesner A., Brandl M.T., Lindow S.E. & Barash I. (1998) Differential involvement of indole-3-acetic acid biosynthesis pathways in pathogenicity and epiphytic fitness of Erwinia herbicola pv. gypsophilae Molecular Plant–Microbe Interaction 11, 634642.
  • Mauch-Mani B. & Métraux J.-P. (1998) Salicylic acid and systemic acquired resistance to pathogen attack. Annals of Botany 82, 535540.
  • Maurhofer M., Hase C., Meuwly P., Métraux J.P. & Défago G. (1994) Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonising Pseudomonas fluorescens strain CHAO: influence of the gacA gene and the pyoverdine production. Phytopathology 84, 139146.
  • Mazzola M., Cook R.J., Thomashow L.S., Weller D.M. & Pierson L.S. (1992) Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Applied and Environmental Microbiology 58, 26162624.
  • Moens S. & Vanderleyden J. (1996) Functions of bacterial flagella. Critical Reviews in Microbiology 22, 67100.
  • Molina A., Görlach J., Volrath S. & Ryals J. (1999) Wheat genes encoding two types of PR-1 proteins are pathogen inducible, but do not respond to activators of systemic acquired resistance. Molecular Plant–Microbe Interaction 12, 5358.
  • Murphy A.M., Chivasa S., Singh D.P. & Carr J.P. (1999) Salicylic acid-induced resistance to viruses and other pathogens: a parting of the way? Trends in Plant Science 4, 155160.
  • Nawrath C. & Métraux J.P. (1999) Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11, 13931404.
  • Noel T.C., Sheng C., Yost C.K., Pharis R.P. & Hynes M.F. (1996) Rhizobium leguminosarum as a plant growth-promoting rhizobacterium: direct growth promotion of canola and lettuce. Canadian Journal of Microbiology 42, 279283.
  • Normanly J., Cohen J.D. & Fink G.R. (1993) Arabidopsis thaliana auxotrophs seveal a tryptophan – independent biosynthetic pathway for indole-3-acetic acid. Proceedings of the National Acadermy of Sciences of the USA 90, 1035510359.
  • Offringa I.A., Melchers L.S., Regenburg-Tuink A.J.G., Costantino P., Schilperoert R.A. & Haoykaas P.J.J. (1986) Complementation of Agrobacterium tumefaciens tumor-inducing aux mutant by genes from the TR-region of the Ri plasmid of Agrobacterium rhizogenes. Proceedings of the National Academy of Sciences of the USA 83, 69356939.
  • Oger P., Petit A. & Dessaux Y. (1997) Genetically engineered plants producing opines alter their biological environment. Nature Biotechnology 15, 369372.
  • Ongena M., Daayf F., Jacques P., Thonart P., Benhamou N., Paulitz T.C., Cornélis P., Koedam N. & Bélanger R.R. (1999) Protection of cucumber against Pythium root rot by fluorescent pseudomonads: predominant role of induced resistance over siderophores and antibiosis. Plant Pathology 48, 6676.
  • Patten C.L. & Glick B.R. (1996) Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology 42, 207220.
  • Penninckx I.A., Eggermont K., Terras F.R., Thomma B.P., De Samblanx G.W., Buchala A., Métraux J.P., Manners J.M. & Broekaert W.F. (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8, 23092323.
  • Persello-Cartieaux F. (2000) Recherche de marqueurs génétiques et moléculaires d’Arabidopsis thaliana impliqués dans l’interaction avec une rhizobactérie, Pseudomonas thivervalensis MLG45. Thesis, Université Paris, Paris, France.
  • Persello-Cartieaux F., David P., Sarrobert C., Thibaud M.C., Achouak W., Robaglia C. & Nussaume L. (2001) Utilization of mutants to analyze the interaction between Arabidopsis thaliana and its naturally root-associated Pseudomonas. Planta 212, 190198.
  • Pierson L.S. & Thomashow L.S. (1992) Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aerofaciens 30–84. Molecular Plant–Microbe Interaction 5, 3039.
  • Pierson E.A., Wood D.W., Cannon J.A., Blachere F.M. & Pierson L.S. III (1998) Interpopulation signalling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere. Molecular Plant Microbe Interaction 11, 10781084.
  • Pieterse C.M. & Jan Loon L.C. (1999) Salicylic acid-induced independent plant defence pathways. Trends in Plant Science 4, 5258.
  • Pieterse C.M., Van Wees S.C.M., Hoffland E., Van Pelt J.A. & Van Loon L.C. (1996) Systemic resistance in Arabidopsis induced by biocontrol bacteria is dependent of salicylic acid accumulation and pathogenesis-related gene expression. The Plant Cell 8, 12251237.
  • Pieterse C.M., Van Wees S.C.M., Van Pelt J.A., Knoester M., Laan R., Gerrits H., Weisbeek P.J. & Van Loon L.C. (1998) A novel signalling pathway controlling induced systemic resistance in Arabidopsis. The Plant Cell 10, 15711580.
  • Press C.M., Wilson M., Tuzun S. & Kloepper J.W. (1997) Salicylic acid produced by Serratia marcescens 90–166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Molecular Plant–Microbe Interaction 10, 761768.
  • Preston G.M., Haubold B. & Rainey P.B. (1998) Bacterial genomics and adaptation to life on plants: implications for the evolution of pathogenicity and symbiosis. Current Opinion in Microbiology 1, 589597.
  • Rainey P.B. (1999) Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environmental Microbiology 1, 243257.
  • Schroth M.N. & Hancock J.G. (1982) Disease-suppressive soil and root-colonising bacteria. Science 216, 13761381.
  • Selvadurai E.L., Brown A.E. & Hamilton J.T.G. (1991) Production of indole-3-acetic acid analogues by strains of Bacillus cereus in relation to their influence on seedling development. Soil Biology and Biochemistry 23, 401403.
  • Serdyuk O.P., Smolygina L.D., Muzafarov E.N., Adanin V.M. & Arinbasarov M.U. (1995) 4-Hydroxyphenethyl alcohol, a new cytokinin-like substance from the phototrophic purple bacterium Rhodospirillum rubrum 1R. FEBS Letters 365, 1012.
  • Shah S., Li J., Moffatt B.A. & Glick B.R. (1998) Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Canadian Journal of Microbiology 44, 833843.
  • Simons M., Permentier H.P., De Weger L.A., Wijffelman C.A. & Lugtenberg B.J.J. (1997) Amino acid synthesis is necessary for tomato root colonisation by Pseudomonas fluorescens strain WCS365. Molecular Plant–Microbe Interaction 10, 102106.
  • Simons M., Van Der Bij A.J., Brand I., De Weger L.A., Wijffelman C.A. & Lugtenberg B.J.J. (1996) Gnotobiotic system for studying rhizosphere colonisation by plant growth-promoting Pseudomonas bacteria. Molecular Plant–Microbe Interaction 9, 600607.
  • Smith K.P., Handelsman J. & Goodman R.M. (1999) Genetic basis in plants for interactions with disease-suppressive bacteria. Proceedings of National Academy of Science USA 96, 47864790.
  • Strzelczyk E. & Pokojska-Burdziej A. (1984) Production of auxins and gibberellin-like substances by mycorrhizal fungi, bacteria and actinomycetes isolated from soil and the mycorrhizosphere of pine (Pinus silvestris L.). Plant and Soil 81, 185194.
  • Teplitski M., Robinson J.B. & Bauer W.D. (2000) Plants secrete substances that mimic bacterial N-Acyl Homoserine Lactone signal activities and affect population density-dependent behaviours in associated bacteria. Molecular Plant–Microbe Interaction 13, 637648.
  • Timmusk S. & Wagner E.G. (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Molecular Plant–Microbe Interaction 12, 951959.
  • Ton J., Pieterse C.M.J. & Van Loon L.C. (1999) Identification of a locus in Arabidopsis controlling both the expression of rhizobacteria-mediated induced systemic resistance (ISR) and basal resistance against Pseudomonas syringae pv. tomato. Molecular Plant–Microbe Interaction 12, 911918.
  • Triplett E.W. & Sadowsky M.J. (1992) Genetics of competition for nodulation of legumes. Annual Review of Microbiology 46, 399428.
  • Vallélian-Bindschedler L., Métraux J.P. & Schweizer P. (1998) Salicylic acid accumulation in barley is pathogen specific but not required for defence-gene activation. Molecular Plant–Microbe Interaction 11, 702705.
  • Van Wees S.C., De Stuart E.A.M., Van Pelt J.A., Van Loon L.C. & Pieterse C.M.J. (2000) Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the USA 97, 87118716.
  • Van Wees S.C., Luijendijk M., Smoorenburg I., Van Loon L.C. & Pieterse C.M.J. (1999) Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect o expression of known defence-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge. Plant Molecular Biology 41, 537549.
  • Van Wees S.C., Pieterse C.M., Trijssenaar A., Van’t Westende Y.A., Hartog F. & Van Loon L.C. (1997) Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Molecular Plant–Microbe Interaction 10, 716724.
  • Vande Broek A., Lambrecht M., Eggermont K. & Vanderleyden J. (1999) Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense. Journal of Bacteriology 181, 13381342.
  • Vernooij B., Friedrich L., Morse A., Reist R., Kolditz-Jawhar R., Ward E., Uknes S., Kessmann H. & Ryals J. (1994) Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell 6, 959965.
  • Weingart H. & Völksch B. (1997) Ethylene production by Pseudomonas syringae pathovars in vitro and in planta. Applied Environmental Microbiology 63, 156161.
  • Wood D.W. & Pierson L.S. (1996) The phzI gene of Pseudomonas aureofasciens 30–84 is responsible for the production of a diffusible signal required or phenazine antibiotic production. Gene 168, 4953.
  • Xie H., Pasternak J.J. & Glick B.R. (1996) Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Current Microbiology 32, 6771.