SEARCH

SEARCH BY CITATION

REFERENCES

  • Assunção A.G.L., Da Costa Martins P., De Folter S., Vooijs R., Schat H. & Aarts M.G.M. (2001) Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant, Cell and Environment 0, 217226.
  • Baker A.J.M. (1981) Accumulators and excluders – strategies in the response of plants to heavy metals. Journal of Plant Nutrition 3, 643654.
  • Baker A.J.M. & Brooks R.R. (1989) Terrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry. Biorecovery 1, 81126.
  • Baker A.J.M., McGrath S.P., Reeves R.D. & Smith J.A.C. (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In Phytoremediation of Contaminated Soil and Water (eds N.Terry & G.Bañuelos), pp. 85107. Lewis Publishers, Boca Raton, FL, USA.
  • Baker A.J.M., Reeves R.D. & Hajar A.S.M. (1994) Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). New Phytologist 127, 6168.
  • Beckett P.H.T. & Davis R.D. (1977) Upper critical levels of toxic elements in plants. New Phytologist 79, 95106.
  • Bert V., Bonnin I., Saumitou-Laprade P., De Laguérie P. & Petit D. (2002) Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytologist 155, 4757.
  • Bert V., Macnair M.R., De Laguérie P., Saumitou-Laprade P. & Petit D. (2000) Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations of Arabidopsis halleri (Brassicaceae). New Phytologist 146, 225233.
  • Bert V., Meerts P., Saumitou-Laprade P., Salis P., Gruber W. & Verbruggen N. (2003) Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri. Plant and Soil 249, 918.
  • Boyd R.S. (1998) Hyperaccumulation as a plant defensive strategy. In Plants that Hyperaccumulate Heavy Metals (ed. R.R.Brooks), pp. 181201. CAB International, Wallingford, UK.
  • Brooks R.R., Chambers M.F., Nicks L.J. & Robinson B.H. (1998) Phytomining. Trends in Plant Science 3, 359362.
  • Brown S.L., Chaney R.L., Angle J.S. & Baker A.J.M. (1995) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Science Society of America Journal 59, 125133.
  • Calabrese E.J. & Baldwin L.A. (2003) Toxicology rethinks its central belief. Nature 421, 691692.
  • Chaney R.L., Malik M., Li Y.M., Brown S.L., Brewer E.P., Angle J.S. & Baker A.J.M. (1997) Phytoremediation of soil metals. Current Opinion in Biotechnology 8, 279284.
  • Clemens S., Antosiewicz D.M., Ward J.M., Schachtman D.P. & Schroeder J.I. (1998) The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proceedings of the National Academy of Sciences of the USA 95, 1204312048.
  • Clemens S., Palmgren M.G. & Krämer U. (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends in Plant Science 7, 309315.
  • Cohen C.K., Fox T.C., Garvin D.F. & Kochian L.V. (1998) The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiology 116, 10631072.
  • Connolly E.L., Fett J.P. & Guerinot M.L. (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14, 13471357.
  • Cullen J.T., Lane T.W., Morel F.M.M. & Sherrell R.M. (1999) Modulation of cadmium uptake in phytoplankton by seawater CO2 concentration. Nature 402, 165167.
  • Dahmani-Muller H., Van Oort F., Gélie B. & Balabane M. (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environmental Pollution 109, 231238.
  • Demidchik V., Bowen H.C., Maathuis F.J.M., Shabala S.N., Tester M.A., White P.J. & Davies J.M. (2002a) Arabidopsis thaliana root non-selective cation channels mediate calcium uptake and are involved in growth. Plant Journal 32, 799808.
  • Demidchik V., Davenport R.J. & Tester M. (2002b) Non-selective cation channels in plants. Annual Review of Plant Biology 53, 67107.
  • Denaeyer-De Smet S. & Duvigneaud P. (1974) Accumulation de métaux lourds toxiques dans divers écosystèmes terrestres pollués par des retombées d’origine industrielle. Bulletin de la Société Royale de Botanique de Belgique 107, 147156.
  • Escarré J., Lefèbvre C., Gruber W., Leblanc M., Lepart J., Rivière Y. & Delay B. (2000) Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation. New Phytologist 145, 429437.
  • Grafen A. & Hails R. (2002) Modern Statistics for the Life Sciences. Oxford University Press, Oxford, UK.
  • Henriques R., Jásik J., Klein M., Martinoia E., Feller U., Schell J., Pais M.S. & Koncz C. (2002) Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects. Plant Molecular Biology 50, 587597.
  • Hewitt E.J. & Smith T.A. (1975) Plant Mineral Nutrition. The English Universities Press, London, UK.
  • Hoagland D.R. & Arnon D.I. (1950) The water-culture method for growing plants without soil. California Agricultural Experimental Station Circular 347, 132.
  • Ingrouille M.J. & Smirnoff N. (1986) Thlaspi caerulescens J. & C. Presl (Thlaspi alpestre L.) in Britain. New Phytologist 102, 219233.
  • Knight B., Zhao F.J., McGrath S.P. & Shen Z.G. (1997) Zinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soil solution. Plant and Soil 197, 7178.
  • Koch M., Mummenhoff K. & Hurka H. (1998) Systematics and evolutionary history of heavy metal tolerant Thlaspi caerulescens in Western Europe: evidence from genetic studies based on isozyme analysis. Biochemical Systematics and Ecology 26, 823838.
  • Küpper H., Lombi E., Zhao F.-J. & McGrath S.P. (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212, 7584.
  • Lane T.W. & Morel F.M.M. (2000) A biological function for cadmium in marine diatoms. Proceedings of the National Academy of Sciences of the USA 97, 46274631.
  • Lasat M.M., Baker A.J.M. & Kochian L.V. (1996) Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi. Plant Physiology 112, 17151722.
  • Lasat M.M., Baker A.J.M. & Kochian L.V. (1998) Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in Thlaspi caerulescens. Plant Physiology 118, 875883.
  • Lloyd-Thomas D.H. (1995) Heavy Metal Hyperaccumulation by Thlaspi caerulescens J. & C. Presl. PhD Thesis. University of Sheffield, Sheffield, UK.
  • Lombi E., Tearall K.L., Howarth J.R., Zhao F.-J., Hawkesford M.J. & McGrath S.P. (2002) Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiology 128, 13591367.
  • Lombi E., Zhao F.J., Dunham S.J. & McGrath S.P. (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytologist 145, 1120.
  • Lombi E., Zhao F.J., McGrath S.P., Young S.D. & Sacchi G.A. (2001) Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. New Phytologist 149, 5360.
  • Macnair M.R. (2002) Within and between population genetic variation for zinc accumulation in Arabidopsis halleri. New Phytologist 155, 5966.
  • Macnair M.R., Bert V., Huitson S.B., Saumitou-Laprade P. & Petit D. (1999) Zinc tolerance and hyperaccumulation are genetically independent characters. Proceedings of the Royal Society, London, Series B 266, 21752179.
  • Marschner H. (1995) Mineral Nutrition of Higher Plants, 2nd edn. Academic Press, London, UK.
  • Mäser P., Thomine S., Schroeder J.I., et al. (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiology 126, 16461667.
  • Mathys W. (1977) The role of malate, oxalate and mustard oil glucosides in the evolution of zinc-resistance in herbage plants. Physiologia Plantarum 40, 130136.
  • McGrath S.P., Shen Z.G. & Zhao F.J. (1997) Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils. Plant and Soil 188, 153159.
  • McGrath S.P., Sidoli C.M.D., Baker A.J.M. & Reeves R.D. (1993) The potential for the use of metal-accumulating plants for the in situ decontamination of metal-polluted soils. In Integrated Soil and Sediment Research: a Basis for Proper Protection (eds H.J.P.Eijsackers & T.Hamers), pp. 673676. Kluwer Academic Publishers, Dordrecht, The Netherlands.
  • McGrath S.P., Zhao F.J. & Lombi E. (2002) Phytoremediation of metals, metalloids, and radionuclides. Advances in Agronomy 75, 156.
  • Meerts P. & Van Isacker N. (1997) Heavy metal tolerance and accumulation in metallicolous and non-metallicolous populations of Thlaspi caerulescens from continental Europe. Plant Ecology 133, 221231.
  • Miedema H., Bothwell J.H.F., Brownlee C. & Davies J.M. (2001) Calcium uptake by plant cells – channels and pumps acting in concert. Trends in Plant Science 6, 514519.
  • Pence N.S., Larsen P.B., Ebbs S.D., Letham D.L.D., Lasat M.M., Garvin D.F., Eide D. & Kochian L.V. (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proceedings of the National Academy of Sciences of the USA 97, 49564960.
  • Persans M.W. & Salt D.E. (2000) Possible molecular mechanisms involved in nickel, zinc and selenium hyperaccumulation in plants. Biotechnology and Genetic Engineering Reviews 17, 389413.
  • Pitman M.G. (1988) Whole plants. In Solute Transport in Plant Cells and Tissues (eds D.A.Baker & J.L.Hall), pp. 346391. Longman Scientific & Technical, Harlow, Essex, UK.
  • Pollard A.J. & Baker A.J.M. (1996) Quantitative genetics of zinc hyperaccumulation in Thlaspi caerulescens. New Phytologist 132, 113118.
  • Pollard A.J., Powell K.D., Harper F.A. & Smith J.A.C. (2002) The genetic basis of metal hyperaccumulation in plants. Critical Reviews in Plant Sciences 21, 539566.
  • Poorter H. & Nagel O. (2000) The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Australian Journal of Plant Physiology 27, 595607.
  • Reeves R.D. & Baker A.J.M. (2000) Metal-accumulating plants. In Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment (eds I.Raskin & B.D.Ensley), pp. 193229. John Wiley & Sons, Inc, New York, USA.
  • Reeves R.D. & Brooks R.R. (1983) European species of Thlaspi L. (Cruciferae) as indicators of nickel and zinc. Journal of Geochemical Exploration 18, 275283.
  • Reeves R.D., Schwartz C., Morel J.L. & Edmondson J. (2001) Distribution and metal-accumulating behavior of Thlaspi caerulescens and associated metallophytes in France. International Journal of Phytoremediation 3, 145172.
  • Robinson B.H., Leblanc M., Petit D., Brooks R.R., Kirkman J.H. & Gregg P.E.H. (1998) The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant and Soil 203, 4756.
  • Salt D.E. & Krämer U. (2000) Mechanisms of metal hyperaccumulation in plants. In Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment (eds I.Raskin & B.D.Ensley), pp. 231246. John Wiley & Sons, Inc, New York, USA.
  • Salt D.E., Smith R.D. & Raskin I. (1998) Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology 49, 643668.
  • Sanità di Toppi L. & Gabbrielli R. (1999) Response to cadmium in higher plants. Environmental and Experimental Botany 41, 105130.
  • Schat H., Llugany M. & Bernhard R. (2000) Metal-specific patterns of tolerance, uptake, and transport of heavy metals in hyperaccumulating and nonhyperaccumulating metallophytes. In Phytoremediation of Contaminated Soil and Water (eds N.Terry & G.Bañuelos), pp. 171188. Lewis Publishers, Boca Raton, FL, USA.
  • Shen Z.G., Zhao F.J. & McGrath (1997) Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant, Cell and Environment 20, 898906.
  • Shipley B. & Meziane D. (2002) The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. Functional Ecology 16, 326331.
  • Sokal R.R. & Rohlf F.J. (1995) Biometry, 3rd edn. W.H. Freeman, New York, USA.
  • Stebbing A.R.D. (1982) Hormesis – the stimulation of growth by low levels of inhibitors. Science of the Total Environment 22, 213234.
  • Vázquez M.D., Barceló J., Poschenrieder C., Mádico J., Hatton P., Baker A.J.M. & Cope G.H. (1992) Localization of zinc and cadmium in Thlaspi caerulescens (Brassicaceae), a metallophyte that can hyperaccumulate both metals. Journal of Plant Physiology 140, 350355.
  • Vert G., Grotz N., Dédaldéchamp F., Gaymard F., Guerinot M.L., Briat J.-F. & Curie C. (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14, 12231233.
  • White P.J. (2000) Calcium channels in higher plants. Biochimica et Biophysica Acta 1465, 171189.
  • Whiting S.N., Leake J.R., McGrath S.P. & Baker A.J.M. (2000) Positive responses to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens. New Phytologist 145, 199210.
  • Wilson J.B. (1988) A review of evidence on the control of shoot: root ratio, in relation to models. Annals of Botany 61, 433449.
  • Zhao F.-J., Hamon R.E., Lombi E., McLaughlin M.J. & McGrath S.P. (2002) Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany 53, 535543.