The genetics of resistance to ergosterol demethylation inhibitor (DMI) fungicides of the triazole (conazole) group was examined in a cross between two isolates of the barley powdery mildew fungus, Erysiphe graminis (= Blumeria graminis) f.sp. hordei. One isolate, E1, was previously identified as being resistant to the triazole fungicide triadimenol, while the other, HL3/5, was sensitive. The 56 progeny tested were classified into two distinct groups, either being resistant to triadimenol, like E1, or sensitive, like HL3/5. The segregation ratio was not significantly different from 1:1, consistent with responses to triadimenol being controlled by a single gene. In further tests with cyproconazole, epoxiconazole, propiconazole and tebuconazole, all the progeny classified as resistant to triadimenol were also more resistant to each of these other triazole fungicides than were any of the triadimenol-sensitive progeny. This is consistent with the triadimenol resistance allele also conferring cross-resistance to the other triazoles. The ratio between the responses of the resistant and sensitive progeny (the resistance factor, RF) was greatest for triadimenol, followed by tebuconazole, propiconazole, epoxiconazole and cyproconazole, in that order. The RF for triadimenol was much greater when the fungicide was applied as a seed treatment than when it was sprayed. Five isolates, covering the five levels of responses to triadimenol identified previously in the UK population of E. graminis f.sp. hordei, were used as standards; a triadimenol-sensitive isolate and one with the lowest level of resistance were sensitive to all four of the other fungicides, while three isolates with higher levels of triadimenol-resistance were also more resistant to the other chemicals.