Detection of Colletotrichum coccodes and Helminthosporium solani in soils by bioassay

Authors


*To whom correspondence should be addressed.

Abstract

The sensitivity of a bioassay in detecting soil inoculum of Colletotrichum coccodes and Helminthosporium solani was examined using potato minitubers and microplants. Tests were conducted on soils which were collected from fields in which the interval after a previous potato crop differed, and which were also artificially infested with conidia or microsclerotia. For C. coccodes, determining plant infection based on the occurrence of infected roots after 9–12 weeks was a sensitive method for detecting and quantifying the amount of inoculum in soil. Infestations of less than 0·4 microsclerotia per g soil were detected in artificially infested soils. A semiselective medium, developed for isolating C. gloeosporioides from pepper, detected soil infestations by C. coccodes as low as nine conidia or one microsclerotium per g soil in artificially infested soil. For H. solani, infection on minitubers was a sensitive measure, with soil inoculum of fewer than 10 conidia per g soil being detected. Soil infestation could be quantified by assessing the percentage surface area of minitubers covered by sporulating lesions, which was strongly related to the amount of soil infestation. The results of these bioassay tests were compared with published results for real-time quantitative PCR assays on the same soils. The two methods were in good agreement in artificially infested soils, but the bioassay appeared to be more sensitive with naturally infested soils.

Ancillary