• 1
    De Togni P, Goellner J, Ruddle NH et al. Abnormal development of peripheral lymphoic organs in mice deficient in lymphotoxin. Science 1994;264:7037.
  • 2
    Koni P, Sacca R, Lawton P et al. Distinct roles in lymphoid orgnanogenesis for lymphotoxins α and β revealed in lymphotoxin β-deficient mice. Immunity 1997;6:491500.
  • 3
    Le Hir M, Bluethmann H, Kosco-Vilbois MH et al. Differentiation of follicular dendritic cells and full antibody responses require tumor necrosis factor receptor-1 signalling. J Exp Med 1996;183:236772.
  • 4
    Pasparakis M, Alexopoulou L, Episkopou V, Kollias G. Immune and inflammatory responses in TNFα-deficient mice: a critical requirement for TNFα in the formation of primary B cell follicles, folliculaire dendritic cell net-works and germinal centers, and in the maturation of the humoral immune response. J Exp Med 1996;184:1397411.
  • 5
    Ettinger R, Browning JL, Michie SA, Van Ewijk W, McDevitt HO. Disrupted splenic architecture, but normal lymph node development in mice expressing a soluble lymphotoxin-β receptor-IgG1 fusion protein. Proc Natl Acad Sci USA 1996;93:131027.DOI: 10.1073/pnas.93.23.13102
  • 6
    Rennert PD, Browning JL, Mebius R, Mackay F, Hochman PS. Surface lymphotoxin α/β complex is required for the development of peripheral lymphoid organs. J Exp Med 1996;184:19992006.
  • 7
    Mackay F, Majeau GR, Lawton P, Hochmann PS, Browning JL. Lymphotoxin but not tumor necrosis factor functions to maintain splenic architecture and humoral responsiveness in adult mice. Eur J Immunol 1997;27:203342.
  • 8
    Kapasi ZF, Burton GF, Shultz LD, Tew JG, Szakal AK. Induction of functional follicular dendritic cell development in severe combined immunodeficiency mice: Influence B and T Cells. J Immunol 1993;150:264858.
  • 9
    Yoshida K, Van Den Berg TK, Dijkstra CD. The functional state of follicular dendritic cells in severe combined immunodeficient (SCID) mice: role of the lymphocytes. Eur J Immunol 1994;24:4648.
  • 10
    Yoshida K, Kaji M, Takahashi T, Van Den Berg TK, Dijkstra CD. Host origin of follicular dendritic cells induced in the spleen of SCID mice after transfer of allogeneic lymphocytes. Immunology 1995;84:11726.
  • 11
    Gonzalez M, Mackay F, Browning JL, Kosco-Vilbois MH, Noelle RJ. The sequential role of lymphotoxin and B cells in the development of splenic follicles. J Exp Med 1998;187:9971007.
  • 12
    Cerny A, Zinkernagel RM, Groscurth P. Development of follicular dendritic cells in lymph nodes of B-cell-depleted mice. Cell Tissue Res 1998;254:44954
  • 13
    Coyle AJ & Gutierez–ramos JC. The expanding B7 superfamily: increasing complexity in costimulatory signals regulating T cell function. Nature Immunol 2001; 2:20374.
  • 14
    Mosman TR & Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 1996;17:13846.DOI: 10.1016/0167-5699(96)80606-2
  • 15
    Banchereau J, Bazan F, Blanchard D et al. The CD40 antigen and its ligand. Annu Rev Immunol 1994;12:881992.
  • 16
    Weinberg AD, Vella AT, Croft M. OW-40: life beyond the effector T cell stage. Semin Immunol 1998;10:47180.DOI: 10.1006/smim.1998.0146
  • 17
    Brown DR, Gree JM, Moskowitz NH et al. Limited role of CD28-mediated signals in T helper subset differentiation. J Exp Med 1996;184:80310.
  • 18
    Cella M, Scheidegger D, Palmer-Lehman K et al. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell costimulatory capacity: T-T help via APC activation. J Exp Med 1996;184:74752.
  • 19
    Lane P. Role of OX40 Signals in Coordinating CD4 T Cell Selection, Migration, and Cytokine Differentiation in T Helper (Th) 1 and Th2 Cells. J Exp Med 2000;191:2015.
  • 20
    Murata K, Ishii N, Takano N et al. Impairment of Antigen-presenting Cell Function in Mice Lacking Expression of OX40 Ligand. J Exp Med 2000;191:36574.
  • 21
    Flynn S, Toellner K-M, Raykundalia C, Goodall M, Lane P. CD4 T cell cytokine differentiation: the B cell activation molecule, OX40 ligantd, instructs CD4 T cells to express interleukin 4 and upregulates expression of the chemokine receptor, Blr-1. J Exp Med 1998;188:297304.
  • 22
    Sartori A, Gri G, Showe L, Benjamin D, Trinchieri G. Interleukin-12: an immunoregulatory cytokine produced by B cells and antigen-presenting cells. J Immunol Methods 1997;11:11627.
  • 23
    Schultze JL, Michalak S, Lowne J et al. Human non-germinal center B cell interleukin (IL) -12 production is primarily regulated by T cell signals CD40 ligand, interferon gamma, and IL-10: role of B cells in the maintenance of T cell responses. J Exp Med 1999;189:112.
  • 24
    Ohnishi E, Iwata T, Inouye S, Kurata T, Sairenji T. Interleukin-4 production in Epstein–Barr virus-transformed B cell lines from peripheral mononuclear cells of patients with atopic dermatitis. J Interferon Cytokine Res 1997;17:597602.
  • 25
    Kindler V, Matthes T, Jeannin P, Zubler RH. Interleukin-2 secretion by human B lymphocytes occurs as a late event and requires additional stimulation after CD40 cross-linking. Eur J Immunol 1995;25:123943.
  • 26
    Harris PD, Haynes L, Sayles PC et al. Reciprocal regulation of polarised cytokine production by effector B and T cells. Nature Immunol 2000;1:47581.
  • 27
    Mosmann T. Complexity or coherence? Cytokine secretion by B cells. Nature Immunol 2000;1:4656.
  • 28
    Stockinger B, Zal T, Zal A, Gray D. B cells solicit their own help from T cells. J Exp Med 1996;183:8919.
  • 29
    De Smedt T, Mechelen MV, De Becker G et al. Effect of interleukin-10 on dendritic cell maturation and function. Eur J Immunol 1997;27:122935.
  • 30
    Askenase PW & Tsuji RF. B-1 B cell IgM antibody initiates T cell elicitation of contact sensitivity. Curr Top Microbiol Immunol 2000;252:1717.
  • 31
    Saoudi A, Simmonds S, Huitinga I, Mason D. Prevention of allergic encephalomyelitis in rats by targeting autoantigens to B cells: evidence that the protective mechanism depends on changes in the cytokine response and migratory properties of the autoantigen-specific T cells. J Exp Med 1995;182:27982.
  • 32
    Mason D. T cell–mediated control of autoimmunity. Arthritis Res 2001; 3:1335.
  • 33
    Lydyard PM, Jewell AP, Jamin C, Youinou PY. CD5 B cells and B cell malignancies. Curr Opin Hematol 1999;6:306.
  • 34
    Caligaris-Cappio F, Gobbi M, Bofill M, Janossy G. Infrequent normal B lymphocytes express features of B-chronic lymphocytic leukemia. J Exp Med 1982;155:6238.
  • 35
    Kantor A. A new nomenclature of B cells. Immunol Today 1991;12:38891.
  • 36
    Stall AM, Wells SM, Lam KP. B-1 cells: unique origins and functions. Sem Immunol 1996;8:4559.DOI: 10.1006/smim.1996.0007
  • 37
    Youinou P, Jamin C, Lydyard PL. CD5 expression in human B-cell populations. Immunol Today 1999;20:3126.DOI: 10.1016/s0167-5699(99)01476-0
  • 38
    Cooke MP, Heath AW, Shokat KM et al. Immunoglobulin signal transduction guides the specificity of B-cell– T-cell interactions and is blocked in tolerant self-reactive B cells. J Exp Med 1994;179:42538.
  • 39
    Hippen KL, Tze LE, Behrens TW. CD5 maintains tolerance in anergic B cells. J Exp Med 2000;191:8839.
  • 40
    Rajewsky K. Clonal selection and learning in the antibody system. Nature 1996;381:7518.
  • 41
    Gay D, Saunders T, Camper S, Weigert M. Receptor editing: an approach by autoreactive B cells to escape tolerance. J Exp Med 1993;177:9991108.
  • 42
    Tiegs SL, Russell DM, Nemazee D. Receptor editing in self-reactive bone marrow B cells. J Exp Med 1993;177:100920.
  • 43
    Radic MZ & Zouali M. Receptor editing, immune diversification and self-tolerance. Immunity 1996;5:50511.
  • 44
    Oettinger MA, Schatz DG, Gorka C, Baltimore D. RAG1 and RAG2, adjacent genes that synergistically activate V (D) recombination. Science 1990;248:151723.
  • 45
    Hikida M, Mori M, Takai T, Tomochika KI, Hamatani K, Ohmori H. Reexpression of RAG1 and RAG2 genes in activated mature mouse B cells. Science 1996;274:20923.DOI: 10.1126/science.274.5295.2092
  • 46
    Han S, Zheng B, Schatz DG, Spanopoulou E, Kelsoe G. Neoteny in lymphocytes: RAG1 and RAG2 expression in germinal center B cells. Science 1996;274:20947.DOI: 10.1126/science.274.5295.2094
  • 47
    Giachino C, Padovan E, Lanzavecchia A. Re-expression of RAG1 and RAG2 genes and evidence for secondary rearrangements in human germinal center B lymphocytes. Eur J Immunol 1998;28:350613.DOI: 10.1002/(sici)1521-4141(199811)28:11<3506::aid-immu3506>;2-a
  • 48
    Meffre E, Papavasiliou F, Cohen P et al. Antigen receptor engagement turns off the V (D) J recombination machinery in human tonsil B cells. J Exp Med 1998;188:76572.
  • 49
    Lam KP, Hühn R, Rajewsky K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 1997;90:107383.
  • 50
    Qin XF, Schwers S, Yu W et al. Secondary V (D) J recombination in B-1 cells. Nature 1999;397:3559.DOI: 10.1038/16933
  • 51
    Kuwato N, Igarashi h Ohmura T, Aizawa S, Sakaguchi N. Absence of expression of RAG1 in peritoneal B-1 cells detected by knocking into RAG1 locus with green fluorescent protein gene. J Immunol 1999;163:63559.
  • 52
    Shi K, Hayashida K, Kaneko M et al. Lymphoid chemokine B cells – attracting chemokine-1 (CXCL13) is expressed in germinal center of ectopic lymphoid follicles within the synovium of chronic arthritis patients. J Immunol, 2001;166:6505.
  • 53
    Scott DI, Hieppe F, Hummel M, Steinhause G, Berek C. Antigen–driven clonal proliferation of B cells within the target tissue of autoimmune disease. The salivary glands of patients with Sjögren's syndrome. J Clin Invest 1998:102:93846.
  • 54
    Itoh K, Meffre E, Albesiano E et al. Immunoglobulin heavy chain variable region gene replacement as a mechanism for receptor revision in rheumatoid arthritis synovial tissue B lymphocytes. J Exp Med 2000;192:115164.
  • 55
    Theofilopoulos AN & Dixon FJ. Murine models of systemic lupus erythematosus. Adv Immunol 1985;37:269390.
  • 56
    Shlomchik MJ, Madaio MP, Ni D, Trounstine M, Huszar D. The role of B cells in lpr/lpr-induced autoimmunity. J Exp Med 1994;180:1295306.
  • 57
    Owen TM, Chan LG, Haberman Am Madaio MP, Shlomchik MJ. A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. J Exp Med 1999;189:163947.
  • 58
    Serreze DV, Chapman HD, Varunum DS et al. B lymphocytes are essential for the initiation of T cell-mediated autoimmune diabetes; analysis of a new ‘speed congenic’ stock of NOD.Igµ null mice. J Exp Med 1996;184:204953.
  • 59
    Falcone M, Lee J, Patstone B, Yeung B, Sarvetnick N. B lymphocytes are crucial antigen-presenting cells in the pathogenic autoimmune response to GAD65 antigen in nonobese diabetic mice. J Immunol 1998;161:11638.
  • 60
    Mangialaio S, Ji H, Korganow AS, Kouskoff V, Benoist C et al. The arthitogenic T cells receptor and its ligand in a model of spontaneous arthritis. Arthritis Rheum 1999;42:251723.
  • 61
    Matsumo I, Staub A, Benoist C, Mathis D. Arthritis provoked by linked T and B cell recognition of a glycolytic enzyme. Science 1999;286:17325.DOI: 10.1126/science.286.5445.1732
  • 62
    Abrahams VM, Cambridge G, Lydyard PM, Edwards JCW. Induction of tumour necrosis factor alpha production by human monocytes: a key role for FcγRIIIa in rheumatoid arthritis. Arthritis Rheum 2000;43:60816.
  • 63
    Edwards JCW & Cambridge G. Sustained improvement in rheumatoid arthritis following a protocol designed to deplete B lymphocytes. Rheumatology 2001;40:17.
  • 64
    Wolf SD, Dittel BN, Hardardottir F, Janeway CA. Experimental autoimmune encephomyelitis induction in genetically B cell-deficient mice. J Exp Med 1996;184:22718.
  • 65
    Mitchison NA & Wedderburn LRB cells in autoimmunity. Proc Natl Acad Sci USA 2000;97:87501.DOI: 10.1073/pnas.97.16.8750
  • 66
    Tsubata T. Co-receptors on B lymphocytes. Curr Opin Immunol 1999;11:24955.DOI: 10.1016/s0952-7915(99)80041-7
  • 67
    Hsueh RC & Scheuerman RH. Tyrosine kinase activation in the decision between growth, differentiation and death responses initiated from the B cell antigen receptor. Adv Immunol 2000;75:283316.
  • 68
    Liossis SN, Kovacs B, Dennis G et al. B cells from patients with systemic lupus erythematosus display abnormal antigen receptor-mediated early signal transduction events. J Clin Invest 1996;98:254957.
  • 69
    Hibbs ML, Tarlinton DM, Armes J et al. Multiple defects in the immune system of lyn deficient mice, culminating in autoimmune disease. Cell 1995;83:30111.
  • 70
    Nishizumi H, Taniuchi I, Yamanashi Y et al. Impaired proliferation of peripheral B cells and indication of autoimmune disease in lyn-deficient mice. Immunity 1995;3:34960.
  • 71
    Chan VW, Meng F, Soriano AL, DeFrance AL, Lowell CA. Characterization of the B lymphocyte populations in lyn-deficient mice and the role of lyn in signal initiation and down-regulation. Immunity 1997;7:6981.
  • 72
    Appleby MW, Kerner JD, Chien S, Maliszewski CR, Bondada S, Perlmutter RM. Involvement of p 59 fyn in interleukin-5 receptor signaling. J Exp Med 1995;182:81120.
  • 73
    Wang J, Koizumi T, Wanatabe I. Altered antigen receptor signaling and impaired Fas-mediated apoptosis in lyn-deficient mice. J Exp Med 1996;184:8318.
  • 74
    Tarakhovsky A, Kanner SB, Hombach J et al. A role for CD5 in TCR-mediated signal transduction and thymocyte selection. Science 1995;269:5357.
  • 75
    Pani G, Kozlowski M, Cambier JC, Mills GB, Siminovitch KA. Identification of the tyrosine phosphatase PTP1C as a B cell antigen receptor-associated protein involved in the regulation of B cell signaling. J Exp Med 1995;181:207784.
  • 76
    Sen G, Bikah G, Venkataraman C, Bondada S. Negative regulation of antigen receptor-mediated signaling by constitutive association of CD5 with the SHP-1 protein tyrosine phosphatase in B-1 cells. Eur J Immunol 1999;29:331928.DOI: 10.1002/(sici)1521-4141(199910)29:10<3319::aid-immu3319>;2-0
  • 77
    Gary-Gouy H, Bruhns P, Schmitt C, Dalloul A, Daeron M et al. The pseudo-immunoregulatory tyrosine-based motif of CD5 mediates its inhibitory action on B cell receptor signaling. J Biol Chem 2000;275:54856.DOI: 10.1074/jbc.275.1.548
  • 78
    Tarakhovsky A. Bar Mitzah for B-1 cells: How will they grow up? J Exp Med 1997;185:9814.
  • 79
    Tze LE, Baness EA, Hippen KL, Behrens TW. Ig light chain receptor editing in anergic B cells. J Immunol 2000;165:6796802.
  • 80
    Ishida H, Hastings R, Kearney J, Howard M. Continuous anti-interleukin-10 antibody administration depletes mice of Ly-1 B cells, but not conventional B cells. J Exp Med 1992;175:121320.
  • 81
    Llorente L, Richaud-Patin Y, Fior R et al. In vivo production of interleukin-10 by non-T cells in rheumatoid arthritis, Sjögren's syndrome and systemic lupus erythematosus. Arthritis Rheum 1994;37:164755.
  • 82
    Shultz LD, Schweitzer PA, Rajan TV, Yi T, Ihle JN et al. Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase gene. Cell 1993;73:144554.
  • 83
    Sidman CL, Shultz LD, Hardy RR, Hayakawa K, Herzenberg LA. Production of immunoglobulin isotypes by Ly-1 + B cells in viable motheaten and normal mice. Science 1986;232:14235.
  • 84
    Lydyard PM & Youinou P. Physiology of CD5-positive B cells in health and disease. Fund Clin Immunol 1994;2:916.
  • 85
    Qian Y, Santiago C, Borrero M, Tedder TF, Clarke SH. Lupus-specific antiribonucleoprotein B cell tolerance in noautoimmune mice is maintained by differentiation to B-1 and governed by B cell receptor signaling thresholds. J Immunol 2001; 166: 24129.
  • 86
    Santulli-Marotto S, Qian Y, Ferguson S, Clarke SH. Anti-Sm B cell differentiation in Ig transgenic MRL/Mp-lpr/lpr mice: altered differentiation and an accelerated response. J Immunol 2001; 166:52929.
  • 87
    Chaouchi N, Vasquez A, Galanaud P, Leprince C. B cell antigen receptor-mediated response. J Immunol 1995;154:3096104.
  • 88
    Tedder TF, Sato S, Poe JC, Fujimoto M. CD19 and CD22 regulate a B lymphocyte signal transduction pathway that contributes to autoimmunity. Keio J Med 2000;49:113.
  • 89
    Wortis HH & Berland R. Origins of B−1 cells. J Immunol 2001; 166 :2163–6.
  • 90
    Gagro A, McCloshey N, Challer A et al. CD5-positive and CD5-negative human B cells converge to an indistinguishable population on signalling through B cell receptors and CD40. Immunology 2000;101:2019.DOI: 10.1046/j.1365-2567.2000.00098.x
  • 91
    Hersenberg LA. B-1 cells: the lineage question revisited. Immunol Rev 2000;175:922.
  • 92
    Pesando JM, Bouchard LS, McMaster BE. CD19 is functionally and physically associated with surface immunoglobulin. J Exp Med 1989;170:215964.
  • 93
    Doody GM, Justement LB, Delibrias CC et al. A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP. Science 1995;269:2424.
  • 94
    Rickert RC, Rajewsky K, Roes J. Impairement of T-cell-dependent B-cell response and B-1 cell development in CD19-deficient mice. Nature 1995;376:3525.
  • 95
    Tamir I, Dal Porto JM, Cambier JC. Cytoplamic protein tyrosine phosphatases SHP-1 and SHP-2: regulators of B cell signal transduction. Curr Opin Immunol 2000;12:30715.DOI: 10.1016/s0952-7915(00)00092-3
  • 96
    Fujimoto M, Poe JC, Jansen PJ, Sato S, Tedder TF. CD19 amplifies B lymphocyte signal transduction by regulating src-family protein tyrosine kinase activation. J Immunol 1999;162:708894.
  • 97
    Fujimoto M, Fujimoto Y, Poe JC et al. CD19 regulate src family tyrosine kinase activation in B lymphocytes through processive amplification. J Immunol 2000;13:4757.
  • 98
    Sato S, Ono N, Steeber DA, Pisetsky DS, Tedder TF. CD1g regulates B lymphocyte signaling thresholds critical for the development of B-1 lineage cells and autoimmunity. J Immunol 1996;157:43718.
  • 99
    Sato S, Hasegawa M, Fujimoto M, Tedder TF, Takehara K. Quantitative genetic variation in CD19 expression correlates with autoimmunity. J Immunol 2000;165:663543.
  • 100
    Smith KG, Tarlinton DM, Doody GM, Hibbs ML, Gearon DT. Inhibition of the B cell by CD22: a requirement for lyn. J Exp Med 1998;187:80711.
  • 101
    O'Keefe TL, Williams GT, Bastista FD, Neuberger MS. Deficiency in CD22, a B cell-specific inhibitory receptor, is sufficient to predispose to development of high affinity autoantibodies. J Exp Med 1999;189:130713.
  • 102
    Wu Y, Nadler MJ, Brennan LA et al. The B cell transmembrane CD72 binds to ad is in vivo substrate of the protein tyrosine phosphatase SHP-1. Curr Biol 1998;8:100917.
  • 103
    Adachi T, Wakabayashi C, Nakayama T, Yakura H, Tsubata T. CD72 negatively regulates signaling through the antigen receptor of B cells. J Immunol 1223;200:164:9.
  • 104
    Evans DM, Frazer IH, Martin NG. Genetic and environmental causes of variation in basal levels of blood cells. Twin Res 1999;2:2507.
  • 105
    Kipps TJ & Vaughan JH. Genetic influence on the levels of circulating CD5+ B lymphocytes. J Immunol 1987;139:10604.
  • 106
    Youinou P, MacKenzie L, Katsikis P et al. The relationship between CD5-expressing B lymphocytes and serologic abnormalities in rheumatoid arthritis patients and their relatives. Arthritis Rheum 1990:33:33948.
  • 107
    Stevenson FK & Natvig J. Autoantibodies revealed: the role of B cells in autoimmune disease. Immunol Today 1999; 20:2968.DOI: 10.1016/s0167-5699(98)01421-2