• 1
    Strobel S, Mowat AM, Drummond HE, Pickering MG, Ferguson A. Immunological responses to fed protein antigens in mice. II. Oral tolerance for CMI is due to activation of cyclophosphamide-sensitive cells by gut-processed antigen. Immunology, 1983;49:451.
  • 2
    Bruce MG, Ferguson A. The influence of intestinal processing on the immunogenicity and molecular size of absorbed, circulating ovalbumin in mice. Immunology, 1986;59:295.
  • 3
    Bruce MG, Ferguson A. Oral tolerance to ovalbumin in mice: studies of chemically modified and ‘biologically filtered’ antigen. Immunology, 1986;57:627.
  • 4
    Bruce MG, Strobel S, Hanson DG, Ferguson A. Irradiated mice lose the capacity to ‘process’ fed antigen for systemic tolerance of delayed-type hypersensitivity. Clin Exp Immunol, 1987;70:611.
  • 5
    Peng HJ, Turner MW, Strobel S. Failure to induce oral tolerance to protein antigens in neonatal mice can be corrected by transfer of adult spleen cells. Pediatr Res, 1989;26:486.
  • 6
    Peng HJ, Turner MW, Strobel S. The generation of a ‘tolerogen’ after the ingestion of ovalbumin is time-dependent and unrelated to serum levels of immunoreactive antigen. Clin Exp Immunol, 1990;81:510.
  • 7
    Furrie E, Turner MW, Strobel S. Failure of SCID mice to generate an oral tolerogen after a feed of ovalbumin: a role for a functioning gut-associated lymphoid system. Immunology, 1994;83:562.
  • 8
    Furrie E, Turner MW, Strobel S. Partial characterization of a circulating tolerogenic moiety which, after a feed of ovalbumin, suppresses delayed-type hypersensitivity in recipient mice. Immunology, 1995;86:480.
  • 9
    Karlsson MR, Lundin S, Kahu H, Dahlgren UI, Telemo E. ‘Tolersomes’ are produced by intestinal epithelial cells. Eur J Immunol, 2001;31:2892900.DOI: 10.1002/1521-4141(2001010)31:10<2892::AID-IMMU2892>3.3.CO;2-9
  • 10
    Zimmer KP, Buning J, Weber P, Kaiserlian D, Strobel S. Modulation of antigen trafficking to MHC class II-positive late endosomes of enterocytes. Gastroenterology, 2000;118:128.
  • 11
    Karlsson MR, Kahu H, Hanson LA, Telemo E, Dahlgren UI. Tolerance and bystander suppression, with involvement of CD25-positive cells, is induced in rats receiving serum from ovalbumin-fed donors. Immunology, 2000;100:326.DOI: 10.1046/j.1365-2567.2000.00050.x
  • 12
    Yoneyama H, Matsuno K, Zhang Y et al. Regulation by chemokines of circulating dendritic cell precursors, and the formation of portal tract-associated lymphoid tissue, in a granulomatous liver disease. J Exp Med, 2001;193:35.
  • 13
    Hara M, Kingsley CI, Niimi M, et al. IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J Immunol, 2001;166:3789.
  • 14
    Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25 (+) CD4 (+) regulatory cells that control intestinal inflammation. J Exp Med, 2000;192:295.
  • 15
    Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation [In Process Citation]. J Exp Med, 1999;190:995.
  • 16
    Suri-Payer E, Amar AZ, Thornton AM, Shevach EM. CD4+CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J Immunol, 1998;160:1212.
  • 17
    Suri-Payer E, Kehn PJ, Cheever AW, Shevach EM. Pathogenesis of post-thymectomy autoimmune gastritis. Identification of anti-H/K adenosine triphosphatase-reactive T cells. J Immunol, 1996;157:1799.
  • 18
    Itoh M, Takahashi T, Sakaguchi N et al. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol, 1999;162:5317.
  • 19
    Takahashi T, Kuniyasu Y, Toda M et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol, 1998;10:1969.
  • 20
    Chung Y, Chang SY, Kang CY. Kinetic analysis of oral tolerance: memory lymphocytes are refractory to oral tolerance. J Immunol, 1999;163:3692.
  • 21
    Leishman AJ, Garside P, Mowat AM. Induction of oral tolerance in the primed immune system: influence of antigen persistence and adjuvant form. Cell Immunol, 2000;202:71.DOI: 10.1006/cimm.2000.1665
  • 22
    Leishman AJ, Garside P, Mowat AM. Immunological consequences of intervention in established immune responses by feeding protein antigens. Cell Immunol, 1998;183:137.DOI: 10.1006/cimm.1998.1242
  • 23
    Lamont AG, Bruce MG, Watret KC, Ferguson A. Suppression of an established DTH response to ovalbumin in mice by feeding antigen after immunization. Immunology, 1988;64:135.
  • 24
    Lundin BS, Karlsson MR, Svensson LA, Hanson LÅ, Dahlgren UI, Telemo E. Active suppression in orally tolerised rats coincides with in situ TGF-beta expression in the draining lymph nodes. Clin Exp Immunol, 1999;116:181.DOI: 10.1046/j.1365-2249.1999.00834.x
  • 25
    Lundin BS, Dahlman-Hoglund A, Pettersson I, Dahlgren UI, Hanson LA, Telemo E. Antibodies given orally in the neonatal period can affect the immune response for two generations: evidence for active maternal influence on the newborn's immune system. Scand J Immunol, 1999;50:651.DOI: 10.1046/j.1365-3083.1999.00651.x
  • 26
    Yamagiwa S, Gray JD, Hashimoto S, Horwitz DA. A role for tgf-beta in the generation and expansion of cd4 (+) cd25 (+) regulatory t cells from human peripheral blood. J Immunol, 2001;166:7282.
  • 27
    Taylor PA, Noelle RJ, Blazar BR. CD4 (+) CD25 (+) immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade. J Exp Med, 2001;193:1311.
  • 28
    Levings MK, Sangregorio R, Roncarolo MG. Human cd25 (+) cd4 (+) t regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J Exp Med, 2001;193:1295.
  • 29
    Jonuleit H, Schmitt E, Stassen M, Tuettenberg A, Knop J, Enk AH. Identification and functional characterization of human cd4 (+) cd25 (+) t cells with regulatory properties isolated from peripheral blood. J Exp Med, 2001;193:1285.
  • 30
    Dieckmann D, Plottner H, Berchtold S, Berger T, Schuler G. Ex vivo isolation and characterization of cd4 (+) cd25 (+) t cells with regulatory properties from human blood. J Exp Med, 2001;193:1303.
  • 31
    Jordan MS, Boesteanu A, Reed AJ et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol, 2001;2:301.DOI: 10.1038/86302
  • 32
    Thornton AM, Shevach EM. Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J Immunol, 2000;164:183.
  • 33
    Read S, Mauze S, Asseman C, Bean A, Coffman R, Powrie F. CD38+ CD45RB (low) CD4+ T cells: a population of T cells with immune regulatory activities in vitro. Eur J Immunol, 1998;28:3435.
  • 34
    Thornton AM, Shevach EM. CD4 (+) CD25 (+) immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med, 1998;188:287.
  • 35
    Schuh K, Twardzik T, Kneitz B, Heyer J, Schimpl A, Serfling E. The interleukin 2 receptor alpha chain/CD25 promoter is a target for nuclear factor of activated T cells. J Exp Med, 1998;188:1369.
  • 36
    Zhang X, Izikson L, Liu L, Weiner HL. Activation of cd25 (+) cd4 (+) regulatory t cells by oral antigen administration. J Immunol, 2001;167:4245.