Provenance analysis and tectonic setting of the Ordovician clastic deposits in the southern Puna Basin, NW Argentina

Authors


Abstract

Provenance studies on Early to Middle Ordovician clastic formations of the southern Puna basin in north-western Argentina indicate that the sedimentary detritus is generally composed of reworked crustal material. Tremadoc quartz-rich turbidites (Tolar Chico Formation, mean composition Qt89 F7 L4) are followed by volcaniclastic rocks and greywackes (Tolillar Formation, mean Qt33 F42 L25). These are in turn overlain by volcaniclastic deposits (mean Qt24 F30 L46) of the Diablo Formation (late Arenig–early Llanvirn) that are intercalated by lava flows. All units were deformed in the Oclóyic Orogeny during the Middle and Late Ordovician. Sandstones of the Tolar Chico Formation are characterized by Th/Sc ratios > 1, La/Sc ratios ≈ 10, whereas associated fine-grained wackes show slightly lower values for both ratios. LREE (light rare earth elements) enrichment of the arenites is ≈ 50× chondrite, Eu/Eu* values are between 0·72 and 0·92, and flat HREE (heavy rare earth elements) patterns indicate a derivation from mostly felsic rocks of typical upper crustal composition. The εNd(t = sed) values scatter around −11 to −9. The calculated Nd-TDM residence ages vary between 1·8 and 2·0 Ga indicating contribution by a Palaeoproterozoic crustal component. The Th/Sc and La/Sc ratios of the Tolillar Formation are lower than those of the Tolar Chico Formation. Normalized REE (rare earth elements) patterns display a similar shape to PAAS (post-Archaean average Australian shale) but with higher abundances of HREEs. Eu/Eu* values range between 0·44 and 1·17, where the higher values reflect the abundance of plagioclase and feldspar-bearing volcanic lithoclasts. Average εNd(t = sed) values are less negative at −5·1, and Nd-TDM are lower at 1·6 Ga. This is consistent with characteristics of regional rocks of upper continental crust composition, which most probably represent the sources of the studied detritus. The rocks of the Diablo Formation have the lowest Th/Sc and La/Sc ratios, lower LREE abundances than the average continental crust and are slightly enriched in HREEs. Eu/Eu* values are between 0·63 and 1·17. The Nd isotopes (εNd(t = sed) = −3 to −1; TDM = 1·2 Ga) indicate that one source component was less fractionated than both the underlying Early Ordovician and the overlying Middle Ordovician units. Synsedimentary vulcanites in the Diablo Formation show the same isotopic composition. Our data indicate that the sedimentary detritus is generally composed of reworked crustal material, but that the Diablo Formation appears to contain ≈ 80% of a less fractionated component, derived from a contemporaneous continental volcanic arc. There are no data indicating an exotic detrital source or the accretion of an exotic block at this part of the Gondwana margin during the Ordovician.

Ancillary