• 1
    Aitken, J.D., 1991. The Ice Brook Formation and Post-Rapitan, Late Proterozoic glaciation, Mackenzie Mountains, Northwest Territories. Geol. Surv. Can. Bull., 404.
  • 2
    Aleinikoff, J.N., Zartman, R.E., Walter, M., Rankin, D.W., Lyttle, P.T. and Burton, W.C., 1995. U–Pb ages of metarhyolites of the Catoctin and Mount Rogers formations, central and southern Appalachians: evidence for two pulses of Iapetan rifting. Am. J. Sci., 295, 428454.
  • 3
    Baker, P.A. and Kastner, M., 1981. Constraints on the formation of sedimentary dolomite. Science, 213, 214216.
  • 4
    Baum, S.K. and Crowley, T.J., 2001. GCM response to Late Precambrian (˜ 590 Ma) ice-covered continents. Geophys. Res. Lett., 28, 583586.
  • 5
    Bekker, A., Kaufman, A.J., Karhu, J.A., Beukes, N.J., Swart, Q.D., Coetzee, L.L. and Eriksson, K.A., 2001. Chemostratigraphy of the Paleoproterozoic Duitschland Formation, South Africa: implications for coupled climate change and carbon cycling. Am. J. Sci., 301, 261285.
  • 6
    Bentley, C.R., 1987. Antarctic ice streams: a review. J. Geophys. Res., 92, 88438858.
  • 7
    Berger, W.H., 1982. Increase of carbon dioxide in the atmosphere during deglaciation: the coral reef hypothesis. Naturwissenschaften, 69, 8788.
  • 8
    Bertrand-Sarfati, J., Flicoteaux, R., Moussine-Pouchkine, A. and Ait Kaci Ahmed, A., 1997. Lower Cambrian apatitic stromatolites and phospharenites related to the glacio-eustatic cratonic rebound (Sahara, Algeria). J. Sed. Res., 67, 957974.
  • 9
    Bidgood, D.E.T. and Harland, W.B., 1961. Palaeomagnetism in some East Greenland sedimentary rocks. Nature, 189, 633634.
  • 10
    Bloxham, J., 2000. Sensitivity of the geomagnetic axial dipole to thermal core–mantle interactions. Nature, 405, 6365.
  • 11
    Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., Widdel, F., Giesecke, A., Amann, R., Jørgensen, B.B. and Pfannkuche, O., 2000. A marine microbial consortium apparently mediating anaerobia oxidation of methane. Nature, 407, 623626.DOI: 10.1038/35036572
  • 12
    Brasier, M.D. and Lindsay, J.F., 1998. A billion years of environmental stability and the emergence of eukaryotes: new data from northern Australia. Geology, 26, 555558.
  • 13
    Brasier, M., McCarron, G., Tucker, R., Leather, J., Allen, P. and Shields, G., 2000. New U–Pb zircon dates for the Neoproterozoic Ghubrah glaciation and for the top of the Huqf Supergroup, Oman. Geology, 28, 175178.
  • 14
    Brasier, M.D. and Shields, G., 2000. Neoproterozoic chemostratigraphy and correlation of the Port Askaig glaciation, Dalradian Supergroup of Scotland. J. Geol. Soc. Lond., 157, 909914.
  • 15
    Brookfield, M.E., 1994. Problems in applying preservation, facies and sequence models to Sinian (Neoproterozoic) glacial sequences in Australia and Asia. Precambrian Res., 70, 113143.
  • 16
    Budyko, M.I., 1966. Polar ice and climate. In: Proceedings of the Symposium on the Arctic Heat Budget and Atmospheric Circulation (J.O.Fletcher, ed.), pp. 3–21. The Rand Corp., Santa Monica, CA.
  • 17
    Budyko, M.I., 1969. The effect of solar radiation variations on the climate of the Earth. Tellus, 21, 611619.
  • 18
    Butterfield, N.J., 2000. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology, 26, 386404.
  • 19
    Butterfield, N.J., Knoll, A.H. and Swett, K., 1990. A bangiophyte red alga from the Proterozoic of arctic Canada. Science, 250, 104107.
  • 20
    Butterfield, N.J., Knoll, A.H. and Swett, K., 1994. Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils Strata, 34, 184.
  • 21
    Butterfield, N.J. and Rainbird, R.H., 1998. Diverse organic-walled fossils, including `possible dinoflagellates', from early Neoproterozoic of arctic Canada. Geology, 26, 963966.
  • 22
    Cahen, L., 1963. Glaciations anciennes et dérive des continents. Ann. Soc. Geol. Belg., 86, 1983.
  • 23
    Caldeira, K. and Kasting, J.F., 1992. Susceptibility of the early Earth to irreversible glaciation caused by carbon dioxide clouds. Nature, 359, 226228.
  • 24
    Canfield, D.E., 1998. A new model for Proterozoic ocean chemistry. Nature, 396, 450453.
  • 25
    Canfield, D.E., Habicht, K.S. and Thamdrup, B., 2000. The Archean sulfur cycle and the early history of atmospheric oxygen. Science, 288, 658661.DOI: 10.1126/science.288.5466.658
  • 26
    Canfield, D.E. and Raiswell, R., 1999. The evolution of the sulfur cycle. Am. J. Sci., 299, 697723.
  • 27
    Canfield, D.E. and Teske, A., 1996. Late Proterozoic rise in atmoispheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature, 382, 127132.
  • 28
    Chumakov, N.M. and Elston, D.P., 1989. The paradox of Late Proterozoic glaciations at low latitudes. Episodes, 12, 115120.
  • 29
    Christie-Blick, N., Dyson, I.A. And Von Der Borch, C.C., 1995. Sequence stratigraphy and the interpretation of Neoproterozoic Earth history. Precambrian Res., 73, 326.
  • 30
    Christie-Blick, N., Sohl, L.E. and Kennedy, M.J., 1999. Considering a Neoproterozoic snowball Earth. Science, 284 online (
  • 31
    Clauer, N., 1987. New information on the probable isotopic age of the late Proterozoic glaciation in West Africa. Precambrian Res., 37, 8994.
  • 32
    Cloud, P.E., Wright, L.A., Williams, E.G., Diehl, P. and Walter, M.R., 1974. Giant stromatolites and associated vertical tubes from the Upper Proterozoic Noonday Dolomite, Death Valley region, eastern California. Geol. Soc. Am. Bull., 85, 18691882.
  • 33
    Colman, A.S. and Holland, H.D., 2000. The global diagenetic flux of phosphorus from marine sediments to the oceans: redox sensitivity and the control of atmospheric oxygen levels. In: Marine Authigenesis: from Global to Microbial (C. R. Glenn, L. Prévôt-Lucas and J. Lucas, eds). Soc. Econ. Paleont. Mineral., Spec. Publ., 66, 53–75.
  • 34
    Condon, D.J. and Prave, A.R., 2000. Two from Donegal: Neoproterozoic glacial episodes on the northeast margin of Laurentia. Geology, 28, 951954.
  • 35
    Condon, D.J., Prave, A.R. and Benn, D.I., 2002. Neoproterozoic glacial-rainout intervals: observations and implications. Geology, 30, 3538.
  • 36
    Corkeron, M.L. and George, A.D., 2001. Glacial incursion on a Neoproterozoic carbonate platform in the Kimberley region, Australia. Geol. Soc. Am. Bull., 113, 11211132.
  • 37
    Corsetti, F.A. and Kaufman, A.J., in press. Stratigraphic investigations of carbon isotope anomalies and Neoproterozoic ice ages in Death Valley, California. Geol. Soc. Am. Bull., in press.
  • 38
    Crawford, A.R. and Daily, B., 1971. Probable non-synchroneity of Late Precambrian glaciations. Nature, 230, 111112.
  • 39
    Croll, J., 1867. On the excentricity of the earth's orbit, and its physical relations to the glacial epoch. Phil. Mag., 33, 119131.
  • 40
    Crowell, J.C., 1983. Ice ages recorded on Gondwanan continents, Du Toit Memorial Lecture, 18. Geol. Soc. S. Afr. Trans., 86, 237262.
  • 41
    Crowell, J.C., 1999. Pre-Mesozoic ice ages: their bearing on understanding the climate system. Mem. Geol. Soc. Am., 192.
  • 42
    Crowley, T.J., Hyde, W.T. and Peltier, W.R., 2001. CO2 levels required for deglaciation of a `near-snowball' Earth. Geophys. Res. Lett., 28, 283286.
  • 43
    Crowley, T.J. and North, G.R., 1991. Paleoclimatology. Oxford University Press, New York.
  • 44
    Dalrymple, R.W. and Narbonne, G.M., 1996. Continental slope sedimentation in the Sheepbed Formation (Neoproterozoic, Windermere Supergroup), Mackenzie Mountains, N.W.T. Can. J. Earth Sci., 33, 848862.
  • 45
    Dempster, T.J., Rogers, G., Tanner, P.W.G., Bluck, B.J., Muir, R.J., Redwood, S.D., Ireland, T.R. and Paterson, B.A., 2002. Timing of deposition, orogenesis and glaciation within the Dalradian rocks of Scotland: constraints from U–Pb zircon ages. J. Geol. Soc., Lond., 159, 8394.
  • 46
    Derry, L.A., Kaufman, A.J. and Jacobsen, S.B., 1992. Sedimentary cycling and environmental change in the Late Proterozoic: evidence from stable and radiogenic isotopes. Geochim. Cosmochim. Acta, 56, 13171329.
  • 47
    Des Marais, D.J. and Moore, J.G., 1984. Carbon and its isotopes in mid-oceanic basaltic glasses. Earth Planet. Sci. Lett., 69, 4357.
  • 48
    Des Marais, D.J., Strauss, H., Summons, R.E. and Hayes, J.M., 1992. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environement. Nature, 359, 605609.
  • 49
    Deynoux, M., 1980. Les Formations Glaciaires Du Précambriens Terminal et de la Fin de l'Ordovicien En Afrique de l'Ouest. Travaux Des Laboratoires Des Sciences de la Terre St. Jérôme, Marseille.
  • 50
    Deynoux, M., 1982. Periglacial polygonal structures and sand wedges in the Late Precambrian glacial formations of the Taoudeni Basin in Adrar of Mauretania (West Africa). Palaeogeogr. Palaeoclimat. Palaeoecol., 39, 5570.
  • 51
    Deynoux, 1985. Terrestrial or waterlain glacial diamictites? Three case studies from the Late Precambrian and Late Ordovician glacial drifts in West Africa. Palaeogeogr. Palaeoclimat. Palaeoecol., 51, 97141.
  • 52
    Deynoux, M., Kocurek, G. and Proust, J.N., 1989. Late Proterozoic periglacial aeolian deposits on the West African Platform, Taoudeni Basin, western Mali. Sedimentology, 36, 531549.
  • 53
    Deynoux, M. and Trompette, R., 1976. Late Precambrian mixtite: glacial and/or non-glacial? Dealing especially with the mixtite of West Africa. Am. J. Sci., 276, 117125.
  • 54
    Drever, J.I., 1974. Geochemical model for the origin of Precambrian banded iron formations. Geol. Soc. Am. Bull., 85, 10991106.
  • 55
    Dunn, P.R., Thomson, B.P. and Rankama, K., 1971. Late Precambrian glaciation in Australia as a stratigiraphic boundary. Nature, 231, 498502.
  • 56
    Edwards, M.B., 1984. Sedimentology of the Upper Proterozoic glacial record, Verstertana Group, Finnmark, North Norway. Nor. Geol. Unders. Bull., 394.
  • 57
    Eisbacher, G.H., 1981. Sedimentary tectonics and glacial record in the Windermere Supergroup, Mackenzie Mountains, northwestern Canada. Geol. Surv. Can. Pap., 80–27.
  • 58
    Embleton, B.J.J. and Williams, G.E., 1986. Low palaeolatitude of deposition for late Precambrian periglacial varvites in South Australia: implications for paleoclimatology. Earth Planet. Sci. Lett., 79, 419430.
  • 59
    Eriksson, E., 1968. Air–ocean–icecap interactions in relation to climatic fluctuations and glaciation cycles. Meteor. Monogr., 8, 6892.
  • 60
    Evans, D.A.D., 2000. Stratigraphic, geochronological, and paleomagnetic constraints upon the Neoproterozoic climatic paradox. Am. J. Sci., 300, 347433.
  • 61
    Evans, D.A., Beukes, N.J. and Kirschvink, J.L., 1997. Low-latitude glaciation in the Palaeoproterozoic era. Nature, 386, 262266.
  • 62
    Eyles, N., 1993. Earth's glacial record and its tectonic setting. Earth-Sci. Rev., 35, 1248.
  • 63
    Fairchild, I.J., 1993. Balmy shores and icy wastes: the paradox of carbonates associated with glacial deposits in Neoproterozoic times. In: Sedimentology Review 1 (V. P. Wright, ed.), pp. 1–16. Blackwell Scientific Publications, Oxford.
  • 64
    Fairchild, I.J. and Hambrey, M.J., 1984. The Vendian succession of northeastern Spitsbergen: petrogenesis of a dolomite–tillite association. Precambrian Res., 26, 111167.
  • 65
    Farquhar, J., Bao, H. and Thiemens, M., 2000. Atmospheric influence of Earth's earliest sulfur cycle. Science, 289, 756758.DOI: 10.1126/science.289.5480.756
  • 66
    Fedonkin, M.A., 1992. Vendian faunas and the early evolution of metazoa. In: Origin and Early Evolution of the Metazoa (J. H. Lipps and P. W. Signor, eds), pp. 87–129. Plenum Press, New York.
  • 67
    Fedonkin, M.A., 1996. The oldest fossil animals in ecological perspective. In: New Perspectives on the History of Life (M. T. Ghiselin and G. Pinna, eds). Mem. Calif. Acad. Sci., 20, 31–45.
  • 68
    Fedonkin, M.A. and Waggoner, B.M., 1997. The Late Precambrian fossil Kimberella is a mollusc-like blaterian organism. Nature, 388, 868871.
  • 69
    Frimmel, H.E., Folling, P.G. and Eriksson, P.G., 2002. Neoproterozoic tectonic and climatic evolution recorded in the Gariep Belt, Namibia and South Africa. Basin Res., 14, 5567.DOI: 10.1046/j.1365-2117.2002.00166.x
  • 70
    Gaidos, E.J., Nealson, K.H. and Kirschvink, J.L., 1999. Life in ice-covered oceans. Science, 284, 16311633.
  • 71
    German, T.N., 1990. Organicheskii mir milliard let nazad (Organic World a Billion Years Ago). Nauka, St. Petersburg.
  • 72
    Gorokhov, I.M., Siedlecka, A., Roberts, D., Melnikov, N.N. and Turchenko, T.L., 2001. Rb–Sr dating of diagenetic illite in Neoproterozoic shales, Varanger Peninsula, northern Norway. Geol. Mag., 138, 541562.
  • 73
    Graf, J.L., O'Connor, E.A. and Van Leeuwen, P., 1994. Rare earth element evidence of origin and depositional environment of Late Proterozoic ironstone beds and manganese-oxide deposits, SW Brazil and SE Bolivia. J. S. Am. Earth Sci., 7, 115133.
  • 74
    Grey, K., 1998. Ediacarian acritarchs of Australia. PhD Thesis, Macquarie University.
  • 75
    Grey, K. and Corkeron, M., 1998. Late Neoproterozoic stromatolites in glacigenic successions of the Kimberley region, Western Australia: evidence for a younger Marinoan glaciation. Precambrian Res., 92, 6587.
  • 76
    Grotzinger, J.P. and James, N.P., 2000. Precambrian carbonates: evolution of understanding. In: Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World (J. P. Grotzinger and N. P. James, eds). SEPM Spec. Publ., 67, 3–20.
  • 77
    Grotzinger, J.P. and Knoll, A.H., 1995. Anomalous carbonate precipitates: is the Precambrian the key to the Permian? Palaios, 10, 578596.
  • 78
    Halverson, G.P., Hoffman, P.F., Schrag, D.P. and Kaufman, A.J., 2002. A major perturbation of the carbon cycle before the Ghaub glaciation (Neoproterozoic) in Namibia: prelude to snowball Earth? Geochem. Geophys. Geosystems, in press.
  • 79
    Halverson, G.P. and Maloof, A.C., 2001. Getting into global glaciation. J. Conference Abstract., 6, 104. Eur. Un. Geosci., Strasbourg.
  • 80
    Hambrey, M.J. and Harland, W.B., 1981,. Earth's Pre-Pleistocene Glacial Record. Cambridge University Press, Cambridge.
  • 81
    Harland, W.B., 1964. Evidence of Late Precambrian glaciation and its significance. In: Problems in Palaeoclimatology (A. E. M. Nairn, ed.),pp. 119–149, 180–184. Interscience. John Wiley & Sons, London.
  • 82
    Harland, W.B., 1997. The Geology of Svalbard. Geol. Soc. (London) Mem., 17.
  • 83
    Harland, W.B. and Bidgood, D.E.T., 1959. Palaeomagnetism in some Norwegian sparagmites and the Late Pre-Cambrian ice age. Nature, 184, 18601862.
  • 84
    Harland, W.B., Hambrey, M.J. and Waddams, P., 1993. Vendian geology of Svalbard. Norsk Polarinstitut Skrifter, 193.
  • 85
    Harland, W.B. and Rudwick, M.J.S., 1964. The great infra-Cambrian ice age. Sci. Am., 211, 2836.
  • 86
    Harland, W.B. and Wilson, C.B., 1956. The Hecla Hoek succession in Ny Friesland, Spitsbergen. Geol. Mag., 93, 265286.
  • 87
    Hegenberger, W., 1987. Gas escape structures in Precambrian peritidal carbonate rocks. Communs. Geol. Surv. S.W. Africa/Namibia, 3, 4955.
  • 88
    Hegenberger, W., 1993. Stratigraphy and sedimentology of the Late Precambrian Witvlei and Nama Groups, east of Windhoek. Geol. Surv. Namibia Mem., 17.
  • 89
    Hoffmann, K.-H. and Prave, A.R., 1996. A preliminary note on a revised subdivision and regional correlation of the Otavi Group based on glaciogenic diamictites and associated cap dolostones. Communs. Geol. Surv. Namibia, 11, 8186.
  • 90
    Hoffman, P.F., Halverson, G.P. and Grotzinger, J.P., 2002a. Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth's coldest intervals? Comment. Geology, 30, 286287.
  • 91
    Hoffman, P.F., Halverson, G.P., Soffer, G., Schrag, D.P., Bowring, S.A. and DePaolo, D.J., 2001. Theme and variations on Neoproterozoic cap-carbonate sequences: signatures of snowball Earth events. J. Conf Abstract., Eur. Un. Geosci., 6, 9999.
  • 92
    Hoffman, P.F., Kaufman, A.J. and Halverson, G.P., 1998a. Comings and goings of global glaciations on a Neoproterozoic tropical platform in Namibia. GSA Today, 8, 19.
  • 93
    Hoffman, P.F., Kaufman, A.J., Halverson, G.P. and Schrag, D.P., 1998b. A Neoproterozoic snowball Earth. Science, 281, 13421346.DOI: 10.1126/science.281.5381.1342
  • 94
    Hoffman, P.F. and Maloof, A.C., 1999. Glaciation: the snowball theory still holds water. Nature, 397, 384384.
  • 95
    Hoffman, P.F. and Schrag, D.P., 1999. Response: Considering a Neoproterozoic snowball Earth. Science, 284 online (
  • 96
    Hoffman, P.F., 1999. The break-up of Rodinia, birth of Gondwana, true polar wander and the snowball Earth. J. Afr. Earth Sci., 28, 1733.
  • 97
    Hoffman, P.F. and Schrag, D.P., 2000. Snowball Earth. Sci. Am., 282, 6275.
  • 98
    Hoffman, P.F., Van Dusen, A., Maloof, A.C., Ferguson, C. and Schrag, D.P., 2002b. Glimpse of a terrestrial snowball ocean: sea-floor dolomite-barite-aragonite sequence in a Neoproterozoic cap carbonate, northern Canadian Cordillera. Astrobiology Science Conference 2002. Abstract. NASA, Ames, California, in press.
  • 99
    Hofmann, H.J., Narbonne, G.M. and Aitken, J.D., 1990. Ediacaran remains from intertillite beds in northwestern Canada. Geology, 18, 11991202.DOI: 10.1130/0091-7613(1990)018<1199:erfibi>;2
  • 100
    Holland, H.D., 1984. The Chemical Evolution of the Atmosphere and Oceans. Princeton University Press, Princeton, NJ.
  • 101
    Hotinski, R.M., Bice, K.L., Kump, L.R., Najjar, R.G. and Arthur, M.A., 2001. Ocean stagnation and end-Permian anoxia. Geology, 29, 710.
  • 102
    Howchin, W., 1908. Glacial beds of Cambrian age in South Australia. Quat. J. Geol. Soc. Lond., 64, 234259.
  • 103
    Hunt, B.G., 1982. The impact of large variations of the Earth's obliquity on the climate. J. Meteor. Soc. Jpn, 60, 309318.
  • 104
    Hyde, W.T., Crowley, T.J., Baum, S.K. and Peltier, W.R., 2000. Neoproterozoic `snowball Earth' simulations with a coupled climate/ice-sheet model. Nature, 405, 425429.
  • 105
    Ikeda, T. and Tajika, E., 1999. A study of the energy balance climate model with CO2-dependent outgoing radiation: implication for the glaciation during the Cenozoic. Geophys. Res. Lett., 26, 349352.
  • 106
    Isley, A.E. and Abbott, D.H., 1999. Plume-related mafic volcanism and the deposition of banded iron formation. J. Geophys. Res., 104, 15,46115,415,477.
  • 107
    Ito, T., Masuda, K., Hamano, Y. and Matsui, T., 1995. Climate friction: a possible cause for secular drift of Earth's obliquity. J. Geophys. Res., 100, 15,14715,161.
  • 108
    Jacobsen, S.B. and Kaufman, A.J., 1999. The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chem. Geol., 161, 3757.
  • 109
    James, N.P., Narbonne, G.M. and Kyser, T.K., 2001. Late Neoproterozoic cap carbonates: Mackenzie Mountains, northwestern Canada: precipitation and global glacial meltdown. Can. J. Earth Sci., 38, 12291262.
  • 110
    Jenkins, R.J.F., 1992. Functional and ecological aspects of Ediacaran assemblages. In: Origin and Early Evolution of the Metazoa (J. H. Lipps and P. W. Signor, eds), pp. 131–176. Plenum Press, New York.
  • 111
    Jenkins, G.S., 2000. Global climate model high-obliquity soluti8on to the ancient climate puzzles of the faint-young Sun paradox and low-latitude Proterozoic glaciation. J. Geophys. Res., 105, 73577370.DOI: 10.1029/1999jd901125
  • 112
    Jenkins, G.S. and Smith, S.R., 1999. GCM simulations of snowball Earth conditions during the late Proterozoic. Geophys. Res. Lett., 26, 22632266.
  • 113
    Kah, L.C., Lyons, T.W. and Chesley, J.T., 2001. Geochemistry of a 1.2 Ga carbonate-evaporite succession, northern Baffin and Bylot Islands: implications for Mesoproterozoic marine evolution. Precambrian Res., 111, 203234.
  • 114
    Karhu, J.A. and Holland, H.D., 1996. Carbon isotobes and the rise of atmospheric oxygen. Geology, 24, 149152.
  • 115
    Kauffman, E.G., Arthur, M.A., Howe, B. and Scholle, P.A., 1996. Widespread venting of methane-rick fluids in Late Cretaceous (Campanian) submarine springs (Tepee Buttes), Western Interior seaway, U.S.A. Geology, 24, 799802.
  • 116
    Kaufman, A.J., Hayes, J.M., Knoll, A.H. and Germs, G.J.B., 1991. Isotopic compositions of carbonates and organic carbon from upper Proterozoic successions in Namibia: stratigraphic variation and the effects of diagenesis and metamorphism. Precambrian Res., 49, 301327.
  • 117
    Kaufman, A.J. and Knoll, A.H., 1995. Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Res., 73, 2749.
  • 118
    Kaufman, A.J., Knoll, A.H. and Narbonne, G.M., 1997. Isotopes, ice ages, and terminal Proterozoic earth history. Proc. Natl. Acad. Sci. USA, 94, 66006605.
  • 119
    Kendall, C.G.St.C. and Warren, J., 1987. A review of the origin and setting of tepees and their associated fabrics. Sedimentology, 34, 10071028.
  • 120
    Kennedy, M.J., 1996. Stratigraphy, sedimentology, and isotope geochemistry of Australian Neoproterozoic postglacial cap dolostones: deglaciation, δ13C excursions, and carbonate precipitation. J. Sed. Res., 66, 10501064.
  • 121
    Kennedy, M.J., Christie-Blick, N. and Prave, A.R., 2001b. Carbon isotopic composition of Neoproterozoic glacial carbonates as a test of paleoceanographic models for snowball Earth phenomena. Geology, 29, 11351138.
  • 122
    Kennedy, M.J., Christie-Blick, N. and Sohl, L.E., 2001a. Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth's coldest intervals. Geology, 29, 443446.
  • 123
    Kennedy, M.J., Runnegar, B., Prave, A.R., Hoffmann, K.-H. and Arthur, M.A., 1998. Two or four Neoproterozoic glaciations? Geology, 26, 10591063.
  • 124
    Kent, D.V. and Smethurst, M.A., 1998. Shallow bias of paleomagnetic inclinations in the Paleozoic and Precambrian. Earth Planet. Sci. Lett., 160, 391402.
  • 125
    Kirschvink, J.L., 1992. Late Proterozoic low-latitude global glaciation: the snowball earth. In: The Proterozoic Biosphere (J. W. Schopf and C. Klein, eds), pp. 51–52. Cambridge University Press, Cambridge.
  • 126
    Kirschvink, J.L., Gaidos, E.J., Bertani, L.E., Beukes, N.J., Gutzmer, J., Maepa, L.N. and Steinberger, R.E., 2000. Paleoproterozoic snowball Earth: extreme climatic and geochemical global change and its biological consequences. Proc. Natl. Acad. Sci., 97, 14001405.
  • 127
    Klein, C. and Beukes, N.J., 1993. Sedimentology and geochemistry of the glaciogenic late Proterozoic Rapitan iron-formation in Canada. Econ. Geol., 84, 17331774.
  • 128
    Knoll, A.H., 1994. Proterozoic and Early Cambrian protists: evidence for accelerating evolutionary tempo. Proc. Natl. Acad. Sci. USA, 91, 67436750.
  • 129
    Knoll, A.H., 2000. Learning to tell Neoproterozoic time. Precambrian Res., 100, 320.
  • 130
    Knoll, A.H., Bambach, R.K., Canfield, D.E. and Grotzinger, J.P., 1996. Comparative Earth history and Late Permian mass extinction. Science, 273, 452457.
  • 131
    Knoll, A.H. and Carroll, S.B., 1999. Early animal evolution: emerging views from comparative biology and geology. Science, 284, 21292137.DOI: 10.1126/science.284.5423.2129
  • 132
    Knoll, A.H., Hayes, J.M., Kaufman, A.J., Swett, K. and Lambert, I.B., 1986. Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland. Nature, 321, 832838.
  • 133
    Knoll, A.H. and Walter, M.R., 1992. Latest Proterozoic stratigraphy and Earth history. Nature, 356, 673678.
  • 134
    Köppen, W. and Wegener, A., 1924, .Die Klimate der Geologischen Vorzeit. Gebrüder Borntraeger, Berlin.
  • 135
    Kröner, A., 1977. Non-synchroneity of Late Precambrian glaciations in Africa. J. Geol., 85, 289300.
  • 136
    Kroopnick, P.M., 1985. The distribution of 13C and ∑CO2 in the world oceans. Deep-Sea Res., 32, 5784.
  • 137
    Kump, L.R., 1991. Interpreting carbon-isotopic excursions: Strangelove oceans. Geology, 19, 299302.
  • 138
    Kump, L.R. and Arthur, M.A., 1999. Interpreting carbon-isotope excursions: carbonates and organic matter. Chem. Geol., 161, 181198.
  • 139
    Kump, L.R. and Seyfried, W.E., 2001. Depressurization of hydrothermal vents during snowball Earth: effects on ocean chemistry. Earth System Processes, Edinburgh, Scotland, Progr. Abstracts, pp. 110, Geological Society, London.
  • 140
    Lachenbruch, A.H., 1962. Mechanics of thermal contraction cracks and ice-wedge polygons in permafrost. Geol. Soc. Am. Spec. Pap., 70.
  • 141
    Lasaga, A.C., 1998. Kinetic Theory in the Earth Sciences. Princeton University Press, Princeton.
  • 142
    Laskar, J., Joutel, F. and Robutel, P., 1993. Stabilization of the Earth's obliquity by the Moon. Nature, 361, 615617.
  • 143
    Lemke, P., 2001. Open windows to the polar oceans. Science, 292, 16701671.
  • 144
    Lemon, N.M. and Gostin, V.A., 1990. Glacigenic sediments of the late Proterozoic Elatina Formation and equivalents, Adelaide Geosyncline, South Australia. In: The Evolution of a Late Precambrian—Early Paleozoic Rift Complex: the Adelaide Geosyncline (J. B. Jago and P. S. Moore, eds). Geol. Soc. Aust. Spec. Publ., 16, 149–163.
  • 145
    Leovy, C., 2001. Weather and climate on Mars. Nature, 412, 245249.
  • 146
    Li, Z.X., 2000. New palaeomagnetic results from the `cap dolomite' of the Neoproterozoic Walsh tillite, northwestern Australia. Precambrian Res., 100, 359370.
  • 147
    Logan, G.A., Hayes, J.M., Hieshima, G.B. and Summons, R.E., 1995. Terminal Proterozoic reorganization of biogeochemical cycles. Nature, 376, 5356.
  • 148
    Lottermoser, B.G. and Ashley, P.M., 2000. Geochemistry, petrology and origin of Neoproterozoic ironstones in the eastern part of the Adelaide geosyncline, South Australia. Precambrian Res., 101, 4967.
  • 149
    MacAyeal, D.R., 1993. A low-order model of the Heinrich Event cycle. Palaeoceanography, 8, 767773.
  • 150
    Maloof, A.C., Kellogg, J.B. and Anders, A.M., 2002. On the origin of Neoproterozoic sand wedge polygons. Astrobiology Science Conference Abstract, NASA, Ames, CA, in press.
  • 151
    Manabe, S. and Broccoli, A.J., 1985. The influence of continental ice sheets on the climate of an ice age. J. Geophys. Res., 90, 21672190.
  • 152
    Marshall, H.G., Walker, J.C.G. and Kuhn, W.R., 1988. Long-term climate change and the geochemical cycle of carbon. J. Geophys. Res., 93, 791801.
  • 153
    Martin, H., 1965. The Precambrian geologyof South West Africa and Namaqualand. Precambrian Research Unit. University of Cape Town, South Africa.
  • 154
    Martin, M.W., Grazhdankin, D.V., Bowring, S.A., Evans, D.A.D., Fedonkin, M.A. and Kirschvink, J.L., 2000. Age of Neoproterozoic bilaterian body and trace fossils, White Sea, Russia: implications for metazoan evolution. Science, 288, 841845.DOI: 10.1126/science.288.5467.841
  • 155
    Maugh, T.H. 1989. Super ice age gave life on Earth growing pains. Los Angeles Times, September 7, pp. 1, 3, 28.
  • 156
    Mawson, D., 1949a. The late Precambrian ice-age and glacial record of the Bibliando dome. J. Proc. Roy. Soc. New South Wales, 82, 150174.
  • 157
    Mawson, D., 1949b. The Elatina glaciation. Trans. R. Soc. S. Aust., 73, 117121.
  • 158
    McCabe, C. and Elmore, R.D., 1989. The occurrence and origin of late Paleozoic remagnetization in the sedimentary rocks of North America. Rev. Geophys., 27, 471494.
  • 159
    McElhinny, M.W., Giddings, J.W. and Embleton, B.J.J., 1974. Palaeomagnetic results and late Precambrian glaciations. Nature, 248, 557561.
  • 160
    McElhinny, M.W. and McFadden, P.L., 2000, Paleomagnetism. Academic Press, San Diego.
  • 161
    McKay, C.P., 2000. Thickness of tropical ice and photosynthesis on a snowball Earth. Geophys. Res. Lett., 27, 21532156.
  • 162
    McKirdy, D.M., Burgess, J.M. and Lemon, N.M., Yu, X., Cooper, A.M., Gostin, V.A., Jenkins, R.J.F. and Both, R.A., 2001. A chemostratigraphic overview of the late Cryogenian interglacial sequence in the Adelaide fold-thrust belt, South Australia. Precambrian Res., 106, 149186.
  • 163
    McMechan, M.E., 2000. Vreeland diamictites—Neoproterozoic glaciogenic slope deposits, Rocky Mountains, northeast British Columbia. Can. Bull. Petrol. Geol., 48, 246261.
  • 164
    McMillan, M.D., 1968. The geology of the Witputs-Sendelingsdrif area. Bull. Precambr. Res. Unit, 4. University of Cape Town.
  • 165
    Miller, J.M.G., 1985. Glacial and syntectonic sedimentation: the upper Proterozoic Kingston Peak Formation, southern Panamint Range, eastern California. Geol. Soc. Am. Bull., 96, 15371553.
  • 166
    Moussine-Pouchkine, A. and Bertrand-Sarfati, J., 1997. Tectonosedimentary subdivisions in the Neoproterozoic to Early Cambrian cover of the Taoudeni Basin (Algeria-Mauritania-Mali). J. Afr. Earth Sci., 24, 425443.
  • 167
    Murakami, T., Utsunomiya, S., Imazu, Y. and Prasad, N., 2001. Direct evidence of late Archean to early Proterozoic anoxic atmosphere from a product of 2.5 Ga old weathering. Earth Planet. Sci. Lett., 184, 523528.
  • 168
    Myrow, P.M. and Kaufman, A.J., 1999. A newly discovered cap carbonate above Varanger-age glacial deposits in Newfoundland. Can. J. Sed. Res., 69, 784793.
  • 169
    Narbonne, G.M., 1994. New Ediacaran fossils from the Mackenzie Mountains, northwestern Canada. J. Paleont., 68, 411416.
  • 170
    Narbonne, G.M. and Aitken, J.D., 1990. Ediacaran fossils from the Sekwi Brook area, Mackenzie Mountains, northwestern Canada. Palaeontology, 33, 945980.
  • 171
    Narbonne, G.M. and Aitken, J.D., 1995. Neoproterozoic of the Mackenzie Mountains, northwestern Canada. Precambrian Res., 73, 101121.
  • 172
    Néron de Surgy, O. and Laskar, J., 1997. On the long term evolution of the spin of the Earth. Astron. Astrophys., 318, 975989.
  • 173
    Norin, E., 1937. Geology of the western Quruq Tagh, eastern Tien Shan. Reports of the Sino-Swedish Expedition III. Geology. Bokförlags Aktiebolaget Thule, Stockholm.
  • 174
    North, G.R., Cahalan, R.F. and Coakley, J.A., 1981. Energy balance climate models. Rev. Geophys. Space Phys., 19, 91121.
  • 175
    Oglesby, R.J. and Ogg, J.G., 1999. The effect of large fluctuations in obliquity on climates of the late Proterozoic. Paleoclimates, 2, 293316.
  • 176
    Ojakangas, R.W., 1988. Glaciation: an uncommon `mega-event' as a key to intracontinental and intercontinental correlation of Early Proterozoic basin fill, North American and Baltic cratons. In: New Perspectives in Basin Analysis (K. L. Kleinspehn and C. Paola, eds), pp. 431–444. Springer, New York.
  • 177
    Pais, M.A., Le Mouël, J.L., Lambeck, K. and Poirier, J.P., 1999. Late Precambrian paradoxical glaciation and obliquity of the Earth—a discussion of dynamical constraints. Earth Planet. Sci. Lett., 174, 155171.
  • 178
    Park, J.K., 1997. Paleomagnetic evidence for low-latitude glaciation during deposition of the Neoproterozoic Rapitan Group, Mackenzie Mountains, N.W.T., Canada. Can. J. Earth Sci., 34, 3449.
  • 179
    Pavlov, A.A., Kasting, J.F., Brown, L.L., Rages, K.A. and Freedman, R., 2000. Greenhouse warming by CH4 in the atmosphere of early Earth. J. Geophys. Res., 105, 11,98111,911,990.
  • 180
    Perry, W.J. and Roberts, H.G., 1968. Late Precambrian glaciated pavements in the Kimberley region, Western Australia. J. Geol. Soc. Aust., 15, 5156.
  • 181
    Peryt, T.M., Hoppe, A., Bechstädt, T., Köster, J., Pierre, C. and Richter, D.K., 1990. Late Proterozoic aragonitic cementcrusts, Bambuí Group, Minas Gerais, Brazil. Sedimentology, 37, 279286.
  • 182
    Peterson, K.J. and Takacs, C., 2001. Fossils, molecular clocks and the Cambrian explosion. Geol. Soc. Am., Abstract. Progr., 33, 430430.
  • 183
    Plumb, K.A., 1981. Late Proterozoic (Adelaidean) tillites of the Kimberley–Victoria River region, Western Australia and Northern Territory. In: Earth's Pre-Pleistocene Glacial Record (M. J. Hambrey and W. B. Harland, eds), pp. 504–514. Cambridge University Press, Cambridge.
  • 184
    Pollard, D. and Kasting, J.K., 2001. Coupled GCM-ice sheet simulations of Sturtian (750–720 Ma) glaciation: When in the snowball-Earth cycle can tropical glaciation occur? Eos, 82, S8S8.
  • 185
    Porter, S.M. and Knoll, A.H., 2000. Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology, 26, 360385.
  • 186
    Poulsen, C.J., Pierrehumbert, R.T. and Jacob, R.L., 2001. Impact of ocean dynamics on the simulation of the Neoproterozoic `snowball Earth'. Geophys. Res. Lett., 28, 15751578.
  • 187
    Powell, C.McA., Pisarevsky, S.A. and Wingate, M.T.D., 2001. An animated history of Rodinia. Geol. Soc. Aus., Abstract., 65, 8587.
  • 188
    Prasad, N. and Roscoe, S.M., 1996. Evidence for anoxic to oxic atmospheric change during 2.45–2.22 Ga from lower and upper sub-Huronian paleosols. Catena, 27, 105121.DOI: 10.1016/0341-8162(96)00003-3
  • 189
    Prave, A.R., 1999a. Two diamictites, two cap carbonates, two δ13C excursions, two rifts: the Neoproterozoic Kingston Peak Formation, Death Valley, California. Geology, 27, 339342.
  • 190
    Prave, A.R., 1999b. The Neoproterozoic Dalradian Supergroup of Scotland: an alternative hypothesis. Geol. Mag., 136, 609617.
  • 191
    Preiss, W.V., 1987. The Adelaide Geosyncline. S. Aust. Department Mines Energ. Bull., 53.
  • 192
    Priscu, J.C., Fritsen, C.H., Adams, E.E., Giovanni, S.J., Paerl, H.W., McKay, C.P., Doran, P.T., Gordon, D.A., Lanoil, B.D. and Pinckney, J.L., 1998. Perennial Antarctic lake ice: an oasis for life in a polar desert. Science, 280, 20952098.
  • 193
    Reusch, H., 1891. Skuringsmærker og morængrus eftervist i Finnmarken fra en periode meget ældre end `istiden'. Norges Geol. Unders., 1, 7885 (97–100 English summary).
  • 194
    Rice, A.H.N. and Hofmann, C.-C., 2000. Evidence for a glacial origin of Neoproterozoic III striations at Oaibaccannjar'ga, Finnland, northern Norway. Geol. Mag., 137, 355366.
  • 195
    Roberts, J.D., 1976. Late Precambrian dolomites, Vendian glaciation, and synchroneity of Vendian glaciations. J. Geol., 84, 4763.
  • 196
    Runnegar, B., 1982. The Cambrian explosion: animals or fossils? J. Geol. Soc. Aust., 29, 395411.
  • 197
    Runnegar, B., 2000. Loophole for snowball Earth. Nature, 405, 403404.DOI: 10.1038/35013168
  • 198
    Rye, R. and Holland, H.D., 1998. Paleosols and the evolution of atmospheric oxygen: a critical review. Am. J. Sci., 298, 621672.
  • 199
    Saltzman, M.R., Ripperdan, R.L., Brasier, M.D., Lohman, K.C., Robison, R.A., Chang, W.T., Peng, S., Ergaliev, E.K. and Runnegar, B., 2000. A global carbon isotope excursion (SPICE) during the Late Cambrian: relation to trilobite extinctions, organic-matter burial and sea level. Palaeogeogr. Palaeoclimat. Palaeoecol., 162, 211223.
  • 200
    Saylor, B.Z., Kaufman, A.J., Grotzinger, J.P. and Urban, F., 1998. A composite reference section for terminal Proterozoic strata of southern Namibia. J. Sediment. Res., 68, 12231235.
  • 201
    Schermerhorn, L.J.G., 1974. Late Precambrian mixtites: glacial and/or non-glacial? Am. J. Sci., 274, 673824.
  • 202
    Schermerhorn, L.J.G. and Stanton, W.I., 1963. Tilloids in the West Congo geosyncline. Quart. J. Geol. Soc. Lond., 119, 201241.
  • 203
    Schmidt, P.W. and Williams, G.E., 1995. The Neoproterozoic climatic paradox: equatorial paleolatitude for Marinoan glaciation near sea level in South Australia. Earth Planet. Sci. Lett., 134, 107124.
  • 204
    Schmidt, P.W. and Williams, G.E., 1999. Paleomagnetism of the Paleoproterozoic hematitic breccia and paleosol at Ville-Marie, Québec: further evidence for the low paleolatitude of Huronian glaciation. Earth Planet. Sci. Lett., 172, 273285.
  • 205
    Schmidt, P.W., Williams, G.E. and Embleton, B.J.J., 1991. Low palaeolatitude of Late Proterozoic glaciation: early timing of remanence in haematite of the Elatina Formation, South Australia. Earth Planet. Sci. Lett., 105, 355367.
  • 206
    Schopf, J.W., 1991. Collapse of the Late Proterozoic ecosystem. S. Afr. J. Geol., 94, 3343.
  • 207
    Schrag, D.P., Berner, R.A. and Hoffman, P.F., 2002. On the initiation of a snowball Earth. Geochem. Geophys. Geosystems, in press.
  • 208
    Schrag, D.P. and Hoffman, P.F., 2001. Life, geology and snowball Earth. Nature, 409, 306306.
  • 209
    Seilacher, A., 1992. Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. J. Geol. Soc., Lond., 149, 607613.
  • 210
    Sellers, W.D., 1969. A global climatic model based on the energy balance of the Earth-atmosphere system. J. Appl. Meteor., 8, 392400.
  • 211
    Sheldon, R.P., 1984. Ice-ring origin of the Earth's atmosphere and hydrosphere and Late Proterozoic–Cambrian phosphogenesis. Geol. Surv. India. Spec. Publ., 17, 1721.
  • 212
    Shields, G., Stille, P., Brasier, M.D. and Atudorei, N.-V. 1997. Stratified oceans and oxygenation of the late Precambrian environment: a post glacial geochemical record from the Neoproterozoic of W. Mongolia. Terra Nova, 9, 218222.
  • 213
    Soffer, G., 1998. Evolution of a Neoproterozoic continental margin subject to tropical glaciation. B.A. Thesis, Harvard College, Cambridge, MA.
  • 214
    Sohl, L.E., Christie-Blick, N. and Kent, D.V., 1999. Paleomagnetic polarity reversals in Marinoan (ca. 600 Ma) glacial deposits of Australia: implications for the duration of low-latitude glaciations in Neoproterozoic time. Geol. Soc. Am. Bull., 111, 11201139.
  • 215
    Spencer, A.M., 1971. Late Pre-Cambrian glaciation in Scotland. Mem. Geol. Soc. Lond., 6.
  • 216
    Spencer, A.M. and Spencer, M.O., 1972. The Late Precambrian/Lower Cambrian Bonahaven Dolomite of Islay and its stromatolites. Scott. J. Geol., 8, 269282.
  • 217
    Sprigg, R.C., 1947. Early Cambrian (?) jellyfishes from the Flinders Ranges, South Australia. Trans. R. Soc. S. Aust., 71, 212224.
  • 218
    Sprigg, R.C., 1952. Sedimentation in the Adelaide geosyncline and the formation of the continental terrace. In: Sir Douglas Mawson Anniversary Volume (M. F. Glaessner and E. A. Rudd, eds), pp. 153–159. University of Adelaide, Adelaide.
  • 219
    Sprigg, R.C., 1990. The Adelaide Geosyncline: a century of controversy. In: The Evolution of a Late Precambrian—Early Paleozoic Rift Complex: the Adelaide Geosyncline (J. B. Jago and P. S. Moore, eds). Geol. Soc. Aust. Spec. Publ., 16, 66–83.
  • 220
    Summons, R.E. and Hayes, J.M., 1992. Principles of molecular and isotopic biogeochemistry. In: The Proterozoic Biosphere, a Multidisciplinary Study (J. W. Schopf and C. Klein, eds), pp. 83–93. Cambridge University Press, Cambridge.
  • 221
    Sumner, D.Y., in press. Rapid calcite and aragonite precipitation in late Archean carbonates and Neoproterozoic cap carbonates. In: Precambrian Sedimentary Environments (W. Altermann, ed.). Spec. Publ. Int. Ass. Sed.
  • 222
    Sumner, D.Y. and Grotzinger, J.P., 1996. Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration? Geology, 24, 119122.
  • 223
    Sumner, D.Y., Kirschvink, J.L. and Runnegar, B.N., 1987. Soft-sediment paleomagnetic fold tests of late Precambrian glaciogenic sediments. Eos, 68, 12511251.
  • 224
    Thomas, D.N. and Dieckmann, G.S., 2002. Antarctic sea ice—a habitat for extremophiles. Science, 295, 641644.
  • 225
    Thompson, M.D. and Bowring, S.A., 2000. Age of the Squantum `tillite', Boston basin, Masschusetts: U-Pb zircon constraints on terminal Neoproterozoic glaciation. Am. J. Sci., 300, 630655.
  • 226
    Torsvik, T.H., Smethurst, M.A., Meert, J.G., Van der Voo, R., McKeroow, W.S., Brasier, M.D., Sturt, B.A. and Walderhaug, H.J., 1996. Continental break-up and collision in the Neoproterozoic and Palaeozoic—a tale of Baltica and Laurentia. Earth Sci. Rev., 40, 229258.
  • 227
    Trompette, R., De Alvarenga, C.J.S. and Walde, D., 1998. Geological evolution of the Neoproterozoic Corumbá graben system (Brazil): depositional context of the stratified Fe and Mn ores of the Jacadigo Group. J. S. Am. Earth Sci., 11, 587597.
  • 228
    Tsikos, H. and Moore, J.M., 1998. The Kalahari manganese field: an enigmatic association of iron and manganese. S. Afr. J. Geol., 101, 287290.
  • 229
    Urban, H., Stribrny, B. and Lippolt, H.J., 1992. Iron and manganese deposits of the Urucum district, Mato Grosso do Sul, Brazil. Econ. Geol., 87, 13751392.
  • 230
    Van Cappellen, P. and Ingall, E.D., 1994. Benthic phosphorus regeneration, net primary production, and ocean anoxia: a model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography, 9, 677692.
  • 231
    Van Wagoner, J.C., Posamentier, H.W., Mitchum, R.M., Vail, P.R., Sarg, J.F., Loutit, T.S. and Hardenbol, J., 1988. An overview of the fundamentals of sequence stratigraphy and key definitions. In: Sea-Levels Changes—an Integrated Approach (C. K. Wilgus, H. Posamenier, C. A. Ross and C. G. St. C. Kendall, eds). Soc. Econ. Paleont. Mineral. Spec. Publ., 42, 39–45.
  • 232
    Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G.A.F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O.G. and Strauss, H., 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geol., 161, 5988.
  • 233
    Veizer, J., Clayton, R.N. and Hinton, R.W., 1992. Geochemistry of Precambrian carbonates. IV. Early Paleoproterozoic (2.25 ± 0.25 Ga) seawater. Geochim. Cosmochim. Acta, 56, 875885.
  • 234
    Vidal, G. and Knoll, A.H., 1982. Radiations and extinctions of plankton in the late Proterozoic and early Cambrian. Nature, 297, 5760.
  • 235
    Vidal, G. and Moczydlowska-Vidal, M., 1997. Biodiversity, speciation, and extinction trends of Proterozoic and Cambrian phytoplankton. Paleobiology, 23, 230246.
  • 236
    Vincent, W.F. and Howard-Williams, C., 2000. Life on snowball Earth. Science, 287, 24212421.
  • 237
    Von Der Borch, C.C., Christie-Blick, N. and Grady, A.E., 1988. Depositional sequence analysis applied to Late Proterozoic Wilpena Group, Adelaide Geosyncline, South Australia. Aust. J. Earth Sci., 35, 5971.
  • 238
    Walker, J.C.G., 2001. Strange weather on snowball Earth. Earth System Processes, Edinburgh, Scotland, Progr. Abstracts, pp. 110–111, Geological Society, London.
  • 239
    Walker, J.C.G. and Brimblecombe, P., 1985. Iron and sulfur in the pre-biologic ocean. Precambrian Res., 28, 205222.
  • 240
    Walker, J.C.G., Hays, P.B. and Kasting, J.F., 1981. A negative feedback mechanism for the long-term stabilization of Earth's surface temperature. J. Geophys. Res., 86, 97769782.
  • 241
    Walker, J.C.G., 2001. Strange weather on snowball Earth. Earth System Processes, Edinburgh, Scotland, Progr. Abstracts, pp. 110–111, Geological Society, London.
  • 242
    Walter, M.R. and Bauld, J., 1983. The association of sulphate evaporites, stromatolitic carbonates and glacial sediments: examples from the Proterozoic of Australia and the Cainozoic of Antarctica. Precambrian Res., 21, 6381.
  • 243
    Walter, M.R., Veevers, J.J., Calver, C.R., Gorjan, P. and Hill, A.C., 2000. Dating the 840–544 Ma Neoproterozoic interval by isotopes of strontium, carbon, and sulfur in seawater, and some interpretive models. Precambrian Res., 100, 371433.
  • 244
    Wang, Y., Lu, S., Gao, Z., Lin, W. and Ma, G., 1981. Sinian tillites of China. In: Earth's Pre-Pleistocene Glacial Record (M. J. Hambrey and W. B. Harland, eds), pp. 386–401. Cambridge University Press, Cambridge.
  • 245
    Warren, S.G., Brandt, R.E., Grenfell, T.C. and McKay, C.P., 2002. Snowball Earth: ice thickness on the tropical ocean. J. Geophys. Res. (Oceans), in press.
  • 246
    Wegener, A., 1922. The Origin of Continents and Oceans, 3rd edn (J.G.A. Skerl, transl.). Methuen, London.
  • 247
    Wetherald, R.T. and Manabe, S., 1975. The effects of changing the solar constant on the climate of a general circulation model. J. Atmos. Sci., 32, 20442059.
  • 248
    Williams, G.E., 1975. Late Precambrian glacial climate and the Earth's obliquity. Geol. Mag., 112, 441444.
  • 249
    Williams, G.E., 1979. Sedimentology, stable-isotope geochemistry and palaeoenvironment of dolostones capping late Precambrian glacial sequences in Australia. J. Geol. Soc. Australia, 26, 377386.
  • 250
    Williams, G.E., 1993. History of the Earth's obliquity. Earth-Sci. Rev., 34, 145.
  • 251
    Williams, G.E., 1996. Soft-sediment deformation structures from the Marinoan glacial succession, Adelaide foldbelt: implications for the paleolatitude of late Neoproterozoic glaciation. Sediment. Geol., 106, 165175.
  • 252
    Williams, G.E., 1998. Late Neoproterozoic periglacial aeolian sand sheet, Stuart Shelf, South Australia. Aust. J. Earth Sci., 45, 733741.
  • 253
    Williams, G.E., 2000. Geological constraints on the Precambrian history of the Earth's rotation and the Moon's orbit. Rev. Geophys., 38, 3759.DOI: 10.1029/1999rg900016
  • 254
    Williams, D.M., Kasting, J.F. and Frakes, L.A., 1998. Low-latitude glaciation and rapid changes in the Earth's obliquity explained by obliquity-oblateness feedback. Nature, 396, 453455.
  • 255
    Williams, G.E. and Schmidt, P.W., 1997. Paleomagnetism of the Proterozoic Gowganda and Lorrain formations, Ontario: low paleolatitude for Huronian glaciation. Earth Planet. Sci. Lett., 153, 157169.
  • 256
    Williams, G.E. and Schmidt, P., 2000. Proterozoic equatorial glaciation: Has `snowball Earth' a snowball's chance? The Aust. Geologist, 117, 2125.
  • 257
    Williams, G.E. and Tonkin, D.G., 1985. Periglacial structures and paleoclimatic significance of a late Precambrian block field in the Cattle Grid copper mine, Mount Gunson, South Australia. Aust. J. Earth Sci., 32, 287300.
  • 258
    Worsley, T.R. and Kidder, D.L., 1991. First-order coupling of paleogeography and CO2 with global surface temperature and its latitudinal contrast. Geology, 19, 11611164.DOI: 10.1130/0091-7613(1991)019<1161:focopa>;2
  • 259
    Wright, L., Williams, E.G. and Cloud, P., 1978. Algal and cryptalgal structures and platform environments of the late pre-Phanerozoic Noonday Dolomite, eastern California. Geol. Soc. Am. Bull., 89, 321333.
  • 260
    Xiao, S., Yuan, X., Kaufman, A.J., Bao, H. and Wang, H., 2001. Neoproterozoic diamictites and stable carbon isotope chemostratigraphy of the Quruqtagh series, NW China. Geol. Soc. Am. Abstract. Progr., 33, A-144A-144.
  • 261
    Yeo, G.M., 1981. The late Proterozoic Rapitan glaciation in the northern Cordillera. In: Proterozoic Basins of Canada (F.H.A. Campbell, ed.). Geol. Surv. Can. Pap., 81–10.
  • 262
    Yeo, G.M., 1986. Iron-formation in the late Proterozoic Rapitan Group, Yukon and Northwest Territories. In: Mineral Deposits of Northern Cordillera (J.A. Morin, ed.), Can. Inst. Mining Metallurgy Spec. Vol., 37, 142–153.
  • 263
    Young, G.M., 1973. Tillites and aluminous quartzites as possible time markers for middle Precambrian (Aphebian) rocks of North America. In: Huronian Stratigraphy and Sedimentation (G. M. Young, ed.). Geol. Assoc. Can. Spec. Pap., 12, 97–125.
  • 264
    Young, G.M., 1976. Iron-formation and glaciogenic rocks of the Rapitan Group, Northwest Territories, Canada. Precambrian Res., 3, 137158.
  • 265
    Young, G.M., 1988. Proterozoic plate tectonics, glaciation and iron-formations. Sediment. Geol., 58, 127144.
  • 266
    Young, G.M., 1995. Are Neoproterozoic glacial deposits preserved on the margins of Laurentia related to the fragmentation of two supercontinents? Geology, 23, 153156.
  • 267
    Young, G.M. and Gostin, V.A., 1991. Late Proterozoic (Sturtian) succession of the North Flinders basin, South Australia: and example of temperate glaciation in an active rift setting. In: Glacial Marine Sedimentation: Paleoclimatic Significance (J. B. Anderson and G. M. Ashley, eds). Geol. Soc. Am. Spec. Pap., 261, 207–222.
  • 268
    Zhang, Y., Yin, L., Xiao, S., and Knoll, A.H., 1988. Permineralized fossils from the terminal Proterozoic Doushantuo Formation, South China. Paleont. Soc. Mem., 50, 152.
  • 269
    Zhang, R., Follows, M.J., Grotzinger, J.P. and Marshall, J., 2001. Could the Late Permian deep ocean have been anoxic? Paleoceanography, 16, 317329.