SEARCH

SEARCH BY CITATION

References

  • Abbas, H.K., Tanaka, T., Duke, S.O., Porter, J.K., Wray, E.M., Hodges, L., Sessions, A.E., Wang, E., Merrill, A.H. and Riley, R.T. (1994) Fumonisin- and AAL-toxin-induced disruption of sphingolipid metabolism with accumulation of free sphingoid bases. Plant Physiol. 106, 10851093.
  • Barz, W.P. and Walter, P. (1999) Two endoplasmic reticulum (ER) membrane proteins that facilitate ER-to-Golgi transport of glycosylphosphatidylinositol-anchored proteins. Mol. Biol. Cell 10, 10431059.
  • Van Der Biezen, E.A., Overduin, B., Kneppers, T.J., Mesbah, L.A., Nijkamp, H.J. and Hille, J. (1994) Molecular genetic characterisation of the Asc locus of tomato conferring resistance to the fungal pathogen Alternaria alternata f.sp. lycopersici. Euphytica, 79, 205217.
  • Brandwagt, B.F., Mesbah, L.A., Takken, F.L., Laurent, P.L., Kneppers, T.J., Hille, J. and Nijkamp, H.J. (2000) A longevity assurance gene homolog of tomato mediates resistance to Alternaria alternata f.sp. lycopersici toxins and fumonisin B1. Proc. Natl. Acad. Sci. USA 97, 49614966.
  • Brandwagt, B.F., Kneppers, T.J.A., Van Der Weerden, G.M., Nijkamp, H.J. and Hille, J. (2001) Most AAL toxin-sensitive Nicotiana species are resistant to the tomato fungal pathogen Alternaria alternata f.sp. lycopersici. Mol. Plant–Microbe Interact. 14, 460470.
  • Brandwagt, B.F., Kneppers, T., Nijkamp, H.J. and Hille, J. (2002) Overexpression of the tomato Asc-1 gene mediates high insensitivity to AAL toxins and fumonisin B (1) in tomato hairy roots and confers resistance to Alternaria alternata f.sp. lycopersici in Nicotiana umbratica plants. Mol. Plant–Microbe Interact. 15, 3542.
  • Clarke, N.G. and Dawson, R.M.C. (1981) Alkaline O–N-trans-acylation. Biochem. J. 195, 301306.
  • Clouse, S.D. and Gilchrist, D.G. (1987) Interaction of the asc locus in F8 paired lines of tomato with Alternaria alternata f.sp. lycopersici AAL-toxin. Phytopathology, 77, 8082.
  • Dean, C., Sjodin, C., Page, T., Jones, J. and Lister, C. (1992) Behaviour of the maize transposable element Ac in Arabidopsis thaliana. Plant J. 2, 6981.
  • Dickson, R.C. and Lester, R.L. (1999) Metabolism and selected functions of sphingolipids in the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 1438, 305321.
  • Dickson, R.C., Nagiec, E.E., Skrzypek, M., Tillman, P., Wells, G.B. and Lester, R.L. (1997) Sphingolipids are potential heat stress signals in Saccharomyces. J. Biol. Chem. 272, 3019630200.
  • Fewster, M.E., Burns, B.J. and Mead, J.F. (1969) Quantitative densitometric thin-layer chromatography of lipids using copper acetate reagent. J. Chromatogr. 43, 120126.
  • Gilchrist, D.G. and Grogan, R.G. (1976) Production and nature of a host-specific toxin from Alternaria alternata f.sp. lycopersici. Physiol. Biochem. 66, 165171.
  • Gilchrist, D.G., Wang, H. and Bostock, R.M. (1994) Sphingosine-related mycotoxins in plant and animal diseases. Can. J. Bot. 73, S459S467.
  • Gilchrist, D.G. (1997) Mycotoxins reveal connections between plants and animals in apoptosis and ceramide signalling. Cell Death Differ. 4, 689698.
  • Greenberg, J.T. (1996) Programmed cell death: a way of life for plants. Proc. Natl. Acad. Sci. USA 93, 1209412097.
  • Greenberg, J.T. (1997) Programmed cell death in plant–pathogen interactions. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 525545.
  • Grogan, R.G., Kimble, K.A. and Misaghi, I. (1975) A stem canker disease of tomato caused by Alternaria alternata f.sp. lycopersici. Phytopathology, 65, 880886.
  • Guillas, I., Kirchman, P.A., Chuard, R., Pfefferli, M., Jiang, J.C., Jazwinski, S.M. and Conzelmann, A. (2001) C26-CoA-dependent ceramide synthesis of Saccharomyces cerevisiae is operated by Lag1p and Lac1p. EMBO J. 20, 26552665.
  • Hannun, Y.A. and Luberto, C. (2000) Ceramide in the eukaryotic stress response. Trends Cell Biol. 10, 7380.
  • Hannun, Y.A., Luberto, C. and Argraves, K.M. (2001) Enzymes of sphingolipid metabolism: from modular to integrative signalling. Biochemistry, 40, 48934903.
  • Hanson, B.A. and Lester, R.L. (1980) The extraction of inositol-containing phospholipids and phosphatidylcholine from Saccharomyces cerevisiae and Neurospora crassa. J. Lipid Res. 21, 309315.
  • Hovarth, A., Sutterlin, C., Manning-Krieg, U., Movva, N.R. and Riezman, H. (1994) Ceramide synthesis enhances transport of GPI-anchored proteins to the Golgi apparatus in yeast. EMBO J. 13, 36873695.
  • Jenkins, G.M., Richards, A., Wahl, T., Mao, C., Obeid, L. and Hannun, Y. (1997) Involvement of yeast sphingolipids in the heat stress response of Saccharomyces cerevisiae. J. Biol. Chem. 272, 3256632572.
  • Jiang, J.C., Kirchman, P.A., Zagulski, M., Hunt, J. and Jazwinski, S.M. (1998) Homologs of the yeast longevity gene LAG1 in Caenorhabditis elegans and human. Genome Res. 8, 12591272.
  • Kim, S., Fyrst, H. and Saba, J. (2000) Accumulation of phosphorylated sphingoid long chain bases results in cell growth inhibition in Saccharomyces cerevisiae. Genetics, 156, 15191529.
  • Kroesen, B.J., Pettus, B., Luberto, C., Busman, M., Sietsma, H., De Leij, L. and Hannun, Y.A. (2001) Induction of apoptosis through B-cell receptor cross-linking occurs via de novo generated C16-ceramide and involves mitochondria. J. Biol. Chem. 276, 1360613614.
  • Kumar, A., Cheung, K.H., Ross-Macdonald, P., Coelho, P.S., Miller, P. and Snyder, M. (2000) triples: a database of gene function in Saccharomyces cerevisiae. Nucl. Acids Res. 28, 8184.
  • Lynch, D.V. (1999) Enzymes of sphingolipid metabolism in plants. In Sphingolipid Metabolism (Merril, A.H. and Hannun, Y.A., eds). San Diego: Academic Press, pp. 130149.
  • Mao, C., Xu, R., Bielawska, A. and Obeid, L.M. (2000) Cloning of an alkaline ceramidase from Saccharomyces cerevisiae. An enzyme with reverse (CoA-independent) ceramide synthase activity. J. Biol. Chem. 275, 68766884.
  • Markham, J.E. and Hille, J. (2001) Host-selective toxins as agents of cell death in plant–fungus interactions. Mol. Plant Pathol. 2, 229239.
  • McBride, K.E. and Summerfelt, K.R. (1990) Improved binary vectors for Agrobacterium-mediated plant transformation. Plant Mol. Biol. 14, 269276.
  • Merrill, A.H., Liotta, D.C. and Riley, R.T. (1996) Fumonisins: fungal toxins that shed light on sphingolipid function. Trends Cell Biol. 6, 218223.
  • Mittler, R. (1998) Cell Death in Plants. In When Cells Die (Lockshin, R.A. Zakeri, Z. and Tilly, J.L., eds). New York: Wiley–Liss Inc., pp. 147174.
  • Moussatos, V.V., Lucas, W.J. and Gilchrist, D.G. (1993) AAL toxin-induced physiological changes in Lycopersicon esculentum Mill: differential sucrose transport in tomato lines isogenic for the Asc locus. Physiol. Mol. Plant Pathol. 42, 359371.
  • Oh, C.S., Toke, D.A., Mandala, S. and Martin, C.E. (1997) ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. J. Biol. Chem. 272, 1737617384.
  • Van Roekel, J.S.C., Damm, B., Melchers, L.S. and Hoekema, A. (1993) Factors influencing transformation frequency of tomato (Lycopersicon esculentum). Plant Cell Reports 12, 644647.
  • Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.
  • Schorling, S., Vallee, B., Barz, W.P., Riezman, H. and Oesterhelt, D. (2001) Lag1p and Lac1p are essential for the Acyl-CoA-dependent ceramide synthase reaction in Saccharomyces cerevisae. Mol. Biol. Cell 12, 34173427.
  • Schroeder, J.J., Crane, H.M., Xia, J., Liotta, D.C. and Merrill, A.H. (1994) Disruption of sphingolipid metabolism and stimulation of DNA synthesis by fumonisin B1. A molecular mechanism for carcinogenesis associated with Fusarium moniliforme. J. Biol. Chem. 269, 34753481.
  • Sherman, F. (1991) Guide to Yeast Genetics and Molecular Biology. In Guide to Yeast Genetics and Molecular Biology (Guthrie, C. and Fink, G.R., eds). San Diego: Academic Press, pp. 321.
  • Sperling, P., Ternes, P., Moll, H., Franke, S., Zahringer, U. and Heinz, E. (2001) Functional characterization of sphingolipid C4-hydroxylase genes from Arabidopsis thaliana. FEBS Lett. 494, 9094.
  • Sullards, M.C. (1999) Analysis of sphingomyelin, glucosylceramide, ceramide, sphingosine, and sphingosine-1-phosphate by tandem mass spectrometry. In Sphingolipid Metabolism and Cell Signalling: Part B (Merrill, A.H. and Hannun, Y.A., eds). San Diego: Academic Press, pp. 3245.
  • Sullards, M.C., Lynch, D.V., Merrill, A.H. and Adams, J. (2000) Structure determination of soybean and wheat glucosylceramides by tandem mass spectrometry. J. Mass Spectrom. 35, 347353.
  • Tolleson, W.H., Couch, L.H., Melchior, W.B., Jenkins, G.R., Muskhelishvili, M., Muskhelishvili, L., McGarrity, L.J., Domon, O., Morris, S.M. and Howard, P.C. (1999) Fumonisin B1 induces apoptosis in cultured human keratinocytes through sphinganine accumulation and ceramide depletion. Int. J. Oncol. 14, 833843.
  • Walton, J.D. (1996) Host-selective toxins: agents of compatibility. Plant Cell 8, 17231733.
  • Wang, E., Norred, W.P., Bacon, C.W., Riley, R.T. and Merrill, A.H. (1991) Inhibition of sphingolipid biosynthesis by fumonisins: implication for diseases associated with Fusarium moniliforme. J. Biol. Chem. 266, 1448614490.
  • Wang, H., Li, J., Bostock, R.M. and Gilchrist, D.G. (1996) Apoptosis: a functional paradigm for programmed plant cell death induced by a host-selective phytotoxin and invoked during development. Plant Cell 8, 375391.
  • Wells, G.B., Dickson, R.C. and Lester, R.L. (1998) Heat-induced elevation of ceramide in Saccharomyces cerevisiae via de novo synthesis. J. Biol. Chem. 273, 72357243.
  • Witsenboer, H.M.A., Van Schaik, C.E., Bino, R.J., Loffler, H.J.M., Nijkamp, H.J.J. and Hille, J. (1988) Effects of Alternaria alternata f.sp lycopersici toxins at different levels of tomato plant cell development. Plant Sci. 56, 253260.
  • Yu, C.H., Lee, Y.M., Yun, Y.P. and Yoo, H.S. (2001) Differential effects of fumonisin B1 on cell death in cultured cells: the significance of the elevated sphinganine. Arch. Pharm. Res. 24, 136143.