SEARCH

SEARCH BY CITATION

References

  • Benveniste, P. (1986) Sterol biosynthesis. Ann. Rev. Plant Physiol. 37, 275307.
  • Bishop, G.J., Nomura, T., Yokota, T., Harrison, K., Noguchi, T., Fujioka, S., Takatsuto, S., Jones, J.D.G., Kamiya, Y. (1999) The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proc. Natl Acad. Sci. USA, 96, 17611766.DOI: 10.1073/pnas.96.4.1761
  • Bladocha, M. & Benveniste, P. (1985) Stereochemical aspects of the biosynthesis of the side chain of 9β,19-cyclopropyl sterols in maize seedlings treated with tridemorph. Plant Physiol. 79, 10981106.
  • Bloch, K.E. (1983) Sterol structure and membrane function. CRC Crit. Rev. Biochem. 14, 4791.
  • Bouvier-Navé, P., Husselstein, T., Benveniste, P. (1998) Two families of sterol methyltransferases are involved in the first and the second methylation steps of plant sterol biosynthesis. Eur. J. Biochem. 256, 8896.
  • Bouvier-Navé, P., Husselstein, T., Desprez, T., Benveniste, P. (1997) Identification of cDNAs encoding sterol methyl-transferases involved in the second methylation step of plant sterol biosynthesis. Eur. J. Biochem. 246, 518529.
  • Choe, S., Dilkes, B.P., Fujioka, S., Takatsuto, S., Sakurai, A., Feldmann, K.A. (1998) The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22α-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell, 10, 231243.
  • Choe, S., Noguchi, T., Fujioka, S. et al. (1999) The Arabidopsis dwf7/ste1 mutant is defective in the Δ7-sterol C-5 desaturation step leading to brassinosteroid biosynthesis. Plant Cell, 11, 207221.
  • Choe, S., Tanaka, A., Noguchi, T., Fujioka, S., Takatsuto, S., Ross, A.S., Tax, F.E., Yoshida, S., Feldmann, K.A. (2000) Lesions in the sterol-Δ7 reductase gene of Arabidopsis cause dwarfism due to a block in brassinosteroid biosynthesis. Plant J. 21, 431443.DOI: 10.1046/j.1365-313x.2000.00693.x
  • Demel, R.A. & De Kruyff, B. (1976) The functions of sterols in membranes. Biochim. Biophys. Acta, 457, 109132.
  • Depicker, A. & Van Montagu, M. (1997) Post-transcriptional gene silencing in plants. Curr. Opin. Cell Biol. 9, 373382.
  • Diener, A.C., Li, H., Zou, W.X., Whoriskey, W.J., Nes, W.D., Fink, G.R. (2000) STEROL METHYLTRANSFERASE 1 controls the level of cholesterol in plants. Plant Cell, 12, 853870.
  • Fonteneau, P., Hartmann, M.A., Benveniste, P. (1977) A 24-methylene lophenol C-28 methyl transferase from suspension cultures of bramble cells. Plant Sci. Letters, 10, 147155.
  • Fujioka, S., Li, J., Choi, Y.H. et al. (1997) The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis. Plant Cell, 9, 19511962.
  • Gaber, R.F., Copple, D.M., Kennedy, B.K., Vidal, M., Bard, M. (1989) The yeast gene ERG6 is required for normal membrane function but is not essential for biosynthesis of the cell-cycle-sparking sterol. Mol. Cell Biol. 9, 34473456.
  • Gachotte, D., Meens, R., Benveniste, P. (1995) An Arabidopsis mutant deficient in sterol biosynthesis: heterologous complementation by ERG3 encoding a Δ7-sterol-C-5-desaturase from yeats. Plant J. 8, 407416.
  • Goodall, G.J., Wiebauer, K., Filipowicz, W. (1990) Analysis of pre-mRNA processing in transfected plant protoplasts. Methods in Enzymology, 88, 148161.
  • Grandmougin-Ferjani, A., Schuler-Müller, I., Hartmann, M.A. (1997) Sterol modulation of the plasma membrane H+-ATPase activity from corn roots reconstituted into soybean lipids. Plant Physiol. 113, 163174.
  • Grebenok, R.J., Galbraith, D.W., Penna, D.D. (1997) Characterization of Zea mays endosperm C-24 sterol methyl transferase: one of two types of sterol methyltransferase in higher plants. Plant. Mol. Biol. 34, 891896.
  • Hensel, L., Nelson, M.A., Richmond, T.A., Bleecker, A. (1994) The fate of inflorescence meristems is controlled by developing fruits in Arabidopsis. Plant Physiol. 106, 863876.
  • Husselstein, T., Gachotte, D., Desprez, T., Bard, M., Benveniste, P. (1996) Transformation of Saccharomyces cerevisiae with a cDNA encoding a sterol C-methyltransferase from Arabidopsis thaliana results in the synthesis of 24-ethyl sterols. FEBS Lett, 381, 8792.DOI: 10.1016/0014-5793(96)00089-0
  • Husselstein, T., Schaller, H., Gachotte, D., Benveniste, P. (1999) Δ7-sterol-C5-desaturase molecular characterization and functional expression of wild type and mutant alleles. Plant Mol. Biol. 39, 891906.
  • Jang, J.C., Fujioka, S., Tasaka, M., Seto, H., Takatsuto, S., Ishii, A., Aida, M., Yoshida, S., Sheen, J. (2000) A critical role of sterols in embryonic patterning and meristem programming revealed by the fackel mutants of Arabidopsis thaliana. Genes Dev. 14, 14851497.
  • Janssen, G.G. & Nes, W.D. (1992) Structural requirements for transformation of substrates by the S-adenosyl-l-methionine: Δ24(25)-sterol methyltransferase. J. Biol. Chem. 267, 2585625863.
  • Kauschmann, A., Jessop, A., Koncz, C., Szekeres, M., Willmitzer, L., Altmann, T. (1996) Genetic evidence for an essential role of brassinosteroids in plant development. Plant J. 9, 701713.
  • Klahre, U., Noguchi, T., Fujioka, S., Takatsuto, S., Yokota, T., Nomura, T., Yoshida, S., Chua, N.H. (1998) The Arabidopsis DIMINUTO/DWARF1 gene encodes a protein involved in steroid synthesis. Plant Cell, 10, 16771690.
  • Li, J., Nagpal, P., Vitart, V., McMorris, T.C., Chory, J. (1996) A role for brassinosteroids in light-dependent development of Arabidopsis. Science, 272, 398401.
  • Li, J. & Chory, J. (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell, 90, 929938.
  • Malhotra, H.C. & Nes, W.R. (1971) The mechanism of introduction of alkyl groups at C-24 of sterols. IV – Inhibition by triparanol. J. Biol. Chem. 246, 49344937.
  • Nes, W.R. & McKean, M.L. (1977) Occurence, physiology and ecology of sterols. In Biochemistry of Steroids and other Isopentenoids. Baltimore: University Park Press, pp. 411533.
  • Nes, W.D., McCourt, B.S., Zhou, W.X., Ma, J., Marshall, J.A., Peek, L.A., Brennan, M. (1998) Overexpression, purification and stereochemical studies of the recombinant (S) -adenosyl-l-methionine: delta 24 (25)- to delta, 24 (28)-sterol methyl transferase enzyme from Saccharomyces cerevisiae. Arch. Biochem. Biophys. 353, 297311.DOI: 10.1006/abbi.1998.0665
  • Noguchi, T., Fujioka, S., Choe, S., Takatsuto, S., Yoshida, S., Yuan, H., Feldmann, K.A., Tax, F.E. (1999) Brassinosteroid-insensitive Dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol. 121, 743752.
  • Nomura, T., Nakayama, M., Reid, J.B., Takeuchi, Y., Yokota, T. (1997) Blockage of brassinosteroid biosynthesis and sensitivity causes dwarfism in garden pea. Plant Physiol. 113, 3137.
  • Rahier, A. & Benveniste, P. (1989) Mass spectral identification of phytosterols. In Analysis of Sterols and Other Biologically Significant Steroïds (Nes, W.D. and Parish, E.J., eds). San Diego: Academic Press, pp. 223250.
  • Rahier, A., Génot, J.C., Schuber, F., Benveniste, P., Narula, A.S. (1984) Inhibition of (S)-adenosyl-l-methionine sterol-C-24-methyltransferase by analogues of a carbonium ion high energy intermediate–structure activity relationship for C-25 heteroatoms (N,As,S) substituted triterpenoid derivatives. J. Biol. Chem. 259, 1521515223.
  • Rendell, N., Misso, N.L.A., Goad, L.J. (1986) Biosynthesis of 24-methylcholest-5-en-3β-ol and 24-ethylcholest-5-en-3β-ol in Zea mays. Lipids, 21, 6368.
  • Sambrook, J., Fritsch, E.F., Maniatis, T. (1989) Molecular Cloning, 2nd edn. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.
  • Schaeffer, A., Bouvier-Navé, P., Benveniste, P., Schaller, H. (2000) Plant sterol-C24-methyl transferases: different profiles of tobacco transformed with SMT1 or SMT2. Lipids, 35, 263269.
  • Schaller, H., Bouvier-Navé, P., Benveniste, P. (1998) Overexpression of an Arabidopsis thaliana (L.) Heynh. cDNA encoding a sterol-C241-methyltransferase in Nicotiana tabacum L. Modifies the ratio of 24-methyl cholesterol to sitosterol and is associated with growth reduction. Plant Physiol. 118, 461469.
  • Schrick, K., Mayer, U., Horrichs, A., Kuhnt, C., Bellini, C., Dangl, J., Schmidt, J., Jürgens, G. (2000) FACKEL is a sterol C-14 reductase required for organized cell division and expansion in Arabidopsis embryogenesis. Genes Dev. 14, 14711484.
  • Schumacher, K. & Chory, J. (2000) Brassinosteroid signal transduction: still casting the actors. Curr. Opin. Cell Biol. 3, 7984.
  • Shi, J., Gonzales, R.A., Bhattacharyya, M.K. (1996) Identification and characterization of an S-adenosyl-l-methionine: Δ24-sterol-C-methyltransferase cDNA from soybean. J. Biol. Chem. 271, 93849389.
  • Szekeres, M., Nemeth, K., Koncz-Kalman, Z. et al. (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell, 85, 171182.
  • Valvekens, D., Van Montagu, M., Van Lijsebettens, M. (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis root explants using kanamycin selection. Proc. Natl Acad. Sci. USA, 85, 55365540.
  • Wojciechowski, Z.A., Goad, L.J., Goodwin, T.W. (1973) S-adenosyl-l-methionine-cycloartenol methyltransferase activity in cell-free systems from Trebouxia sp. and Scenedesmus obliquus. Biochem. J. 136, 405412.
  • Yokota, T. (1997) The structure, biosynthesis, and function of brassinosteroids. Trends Plant Sci. 2, 137143.DOI: 10.1016/s1360-1385(97)01017-0
  • Zhao, R., Dielen, V., Kinet, J.M., Boutry, M. (2000) Cosuppression of a plasma membrane H+-ATPase isoform impairs sucrose translocation, stomatal opening, plant growth and male fertility. Plant Cell, 12, 535546.