• pathogens;
  • necrotrophic fungi;
  • phytohormones;
  • ethylene;
  • salicylic acid;
  • jasmonic acid


Infection of a plant by a pathogen induces a variety of defense responses that imply the action of several signaling molecules, including salicylic acid (SA), jasmonic acid (JA) and ethylene (E). Here we describe the role of ETHYLENE-RESPONSE-FACTOR1 (ERF1) as a regulator of ethylene responses after pathogen attack in Arabidopsis. The ERF1 transcript is induced on infection by Botrytis cinerea, and overexpression of ERF1 in Arabidopsis is sufficient to confer resistance to necrotrophic fungi such as B. cinerea and Plectosphaerella cucumerina. A positive co-operation between E and SA pathways was observed in the plant response to P. cucumerina. Infection by Pseudomonas syringae tomato DC3000, however, does not affect ERF1 expression, and activation of ethylene responses by ERF1 overexpression in Arabidopsis plants reduces tolerance against this pathogen, suggesting negative crosstalk between E and SA signaling pathways, and demonstrating that positive and negative interactions between both pathways can be established depending on the type of pathogen.