Reduced prevalence of Plasmodium falciparum infection and of concomitant anaemia in pregnant women with heterozygous G6PD deficiency


correspondence Dr Frank P. Mockenhaupt, Institut für Tropenmedizin, Spandauer Damm 130, 14050 Berlin, Germany. Tel: +49 30 30116 815; Fax: +49 30 30116 888; E-mail:


Glucose-6-phosphate dehydrogenase (G6PD) deficiency confers protection against malaria in children, yet its role in malaria in pregnancy is unknown. In a cross-sectional study among 529 pregnant Ghanaian women, Plasmodium falciparum infection, anaemia and G6PD genotypes were assessed. Of these, 30.4% were heterozygous and 2.6% were homozygous for G6PD deficiency. The prevalence of P. falciparum infection decreased from 66% in G6PD-normal women to 58% in heterozygotes, and to 50% in individuals with homozygous G6PD deficiency (inline image, P = 0.04). Multivariate analysis revealed that in multigravid women but not in primigravidae, heterozygous G6PD deficiency was associated with a reduced risk of P. falciparum infection (Odds ratio (OR), 0.6; 95% confidence interval (95% CI), [0.4–0.9]). This protection against infection was limited to the third trimenon of pregnancy. In addition, heterozygous G6PD deficiency was associated with a reduced risk of anaemia among infected multigravidae (OR, 0.5 [0.3–1.0]). Pregnancy is a period of high vulnerability to malaria. The results of this study provide evidence for protection against malaria in pregnancy caused by heterozygous G6PD deficiency. This advantage, even if confined to multigravid women, may contribute to the selection of G6PD variants in malaria-endemic regions.