Analytical solutions for the Newtonian gravitational field induced by matter within axisymmetric boundaries

Authors


★ E-mail: John.Conway@hia.no

Abstract

An analytical method originally applied to the problem of the actuator disc in fluid mechanics has been applied to the closely analogous problem of constructing the classical Newtonian potential and attractions. The method can treat axisymmetric problems and also non-axisymmetric cases where matter is confined within axisymmetric boundaries. The potential and attractions for the generalized thin finite disc can be given in closed form in terms of elliptic integrals and elementary functions. For the general case of matter within an axisymmetric boundary, the potentials and attractions can be evaluated as one-dimensional integrals of albeit complex analytical expressions. These expressions represent the fields induced by matter in an extended region as a distribution of gravitating discs. For certain special cases, such as matter bounded by a circular cylinder and also for matter distributed in a spherical region, closed-form solutions can be given that appear to be new. Some non-axisymmetric results are also given for the thin disc of infinite radial extent.

Ancillary