SEARCH

SEARCH BY CITATION

References

  • 1
    Anderson, T.W. 1984. An Introduction to Multivariate Statistical Analysis, 2nd ed,. Wiley, New York.
  • 2
    Arnold, S.J. 1991. Constraints on phenotypic evolution. Am. Nat. 140 S: 85 107.
  • 3
    Bailey, R.C. & Byrnes, J. 1990. A new, old method for assessing measurement error in both univariate and multivariate morphometric studies. Syst. Biol. 39: 124 130.
  • 4
    Björklund, M. 1991. Patterns of morphological variation among Cardueline finches (Fringillidae. Carduelinae). Biol. J. Linne. Soc. 43: 239 248.
  • 5
    Björklund, M. 1992. Selection of bill proportions in the common rosefinch (Carpodacus erythrinus) . Auk 109: 637 642.
  • 6
    Björklund, M. 1995. Species selection on organismal integration. J. Theor. Biol. 171: 427 430.
  • 7
    Björklund, M. 1996. The importance of evolutionary constraints in ecological time scales. Evol. Ecol. 10: 423 431.
  • 8
    Björklund, M. & Merilä, J. 1993. Morphological differentiation in Carduelis finches: adaptive vs. constraint models. J. Evol. Biol. 6: 359 373.
  • 9
    Boag, P.T. 1983. The heritability of external morphology of Darwin’s ground finches on isla Daphne Major, Galapagos. Evolution 37: 877 894.
  • 10
    Boag, P.T. & Grant, P.R. 1981. Intensive natural selection in a population of Darwin’s finches (Geospizinae) in the Galapagos. Science 214: 82 85.
  • 11
    Bookstein, F.L., Chernoff, B.C., Elder, R.L., Humphries, J.M., Smith, G.R., Strauss, R.E. 1985. Morphometrics in evolutionary biology. Acad. Natural Sci. Philadelphia Special Publ. 15: 277pp.
  • 12
    Cheverud, J.M. 1982. Phenotypic, genetic and environmental morphological integration in the cranium. Evolution 36: 499 516.
  • 13
    Cheverud, J.M. 1984. Quantitative genetics and developmental constraints on evolution by selection. J. Theor. Biol. 110: 155 171.
  • 14
    Cheverud, J.M. 1988. Comparison of genetic and phenotypic correlations. Evolution 42: 958 968.
  • 15
    Cheverud, J.M. 1989. A comparative analysis of morphological variation patterns in the papionins. Evolution 43: 1737 1747.
  • 16
    Cheverud, J.M., Wagner, G.P., Dow, M. 1989. Methods for comparative analysis of variation patterns. Syst. Zool. 38: 201 213.
  • 17
    Cowley, D.E. & Atchley, W.R. 1992. Quantitative genetic models for development, epigenetic selection, and phenotypic evolution. Evolution 46: 495 518.
  • 18
    Dobzhansky, T. 1937. Genetics and the Origin of Species. Columbia University Press, New York.
  • 19
    Falconer, D.S. 1989. Introduction to Quantitative Genetics. Longman Scientific and Technical.
  • 20
    Flury, B. 1988. Common Principal Components and Related Multivariate Methods. Wiley, New York.
  • 21
    Gibbs, H.L. & Grant, P.R. 1987. Oscillating selection on Darwin’s finches. Nature 327: 511 513.
  • 22
    Gibson, A.R., Baker, A.J., Moeed, A.J. 1984. Morphometric variation in introduced populations of the Common myna (Acridotheres tristis): an application of the jacknife to principal component analysis . Syst. Zool. 33: 408 421.
  • 23
    Grant, P.R. 1983. Inheritance of size and shape in a population of Darwin’s finches, Geospiza conirostris. Proc. R. Soc. Lond. B 220: 219 236.
  • 24
    Grant, B.R. 1985. Selection on bill characters in a population of Darwin’s finches: Geospitza conirostris on Isla Genovesa, Galapagos. Evolution 39: 523 532.
  • 25
    Grant, P.R. 1986. Ecology and Evolution of Darwin’s Finches. Princeton University Press, Princeton.
  • 26
    Grant, P.R. & Grant, B.R. 1995. Predicting microevolutionary responses to directional selection on heritable variation. Evolution 49: 241 251.
  • 27
    Handford, P. 1983. Continental patterns of morphological variation in a south American sparrow. Evolution 37: 920 930.
  • 28
    Koots, K.R. & Gibson, J.P. 1994. How precise are genetic correlation estimates? Proc. 5th World Cong. Gen. Appl. Livestock Prod., 18, pp. 353–356. Dept. Animal and Poultry Sci., University of Guelph, Ont., Canada.
  • 29
    Lande, R. 1976. Natural selection and random genetic drift in phenotypic evolution. Evolution 30: 314 334.
  • 30
    Lande, R. 1979. Quantitative genetic analysis of multivariate evolution applied to brain:body size allometry. Evolution 33: 402 416.
  • 31
    Lande, R. 1980. Genetic variation and phenotypic evolution during allopatric speciation. Am. Nat. 116: 463 479.
  • 32
    Lloyd, E.A. & Gould, S.J. 1993. Species selection on variability. Proc. Natl. Acad. Sci. USA 90: 595 599.
  • 33
    Lofsvold, D. 1988. Quantitative genetics of morphological differentiation in Peromyscus. II. Analysis of selection and drift. Evolution42: 54–67.
  • 34
    Merilä, J. 1997. Quantitative trait and allozyme divergence in the Greenfinch (Carduelis chloris; Fringillidae) . Biol. J. Linn. Soc. 61: 243 266.
  • 35
    Merilä, J., Björklund, M., Baker, A.J. 1996. Genetic population structure and northward decline of genetic variability in the Greenfinch, Carduelis chloris. Evolution 50: 2548 2557.
  • 36
    Merilä, J., Björklund, M., Bennet, G.F. 1995. Geographic and invidual variation in haematozoan infections in the greenfinch, Carduelis chloris. Can. J. Zool. 73: 1798 1804.
  • 37
    Merilä, J. & Gustafsson, L. 1993. Inheritance of size and shape in a natural population of collared flycatcher, Ficedula albicollis. J. Evol. Biol. 6: 375 398.
  • 38
    Olsson, E.C. & Miller, R.L. 1958. Morphological Integration. University of Chicago Press, Chicago.
  • 39
    Phillips, P.C. 1997. CPC-Common principal component analysis. A program distributed by P.C. Phillips, Biology Department, University of Arlington, Arlington, Texas.
  • 40
    Raikow, R.J. 1977. The origin and evolution of Hawaiian Honeycreepers (Drepanididae). Living Bird 15: 95 117.
  • 41
    Reeve, E.C.D. 1950. Genetical aspects of size allometry. Proc. R. Soc. Lond. B 137: 515 518.
  • 42
    Rice, W.R. 1989. Analyzing tables of statistical tests. Evolution 43: 223 225.
  • 43
    Richner, H. 1989. Habitat-specific growth and fitness in carrion crows (Corvus corone corone) . J. Anim. Ecol. 58: 427 440.
  • 44
    Riska, B. 1989. Composite traits, selection response, and evolution. Evolution 43: 1172 1191.
  • 45
    Roff, D.A. 1995. The estimation of genetic correlations from phenotypic correlations: a test of Cheverud’s conjecture. Heredity 74: 481 490.
  • 46
    Schluter, D. 1994. Adaptive radiation along ‘genetic lines of least resistance’. J. Ornith. 135: 357.
  • 47
    Schluter, D. & Smith, J.N. 1986a. Natural selection on beak and body size in the song sparrow. Evolution 40: 221 231.
  • 48
    Schluter, D. & Smith, J.N.M. 1986b. Genetic and phenotypic correlations in a natural population of song sparrows. Biol. J. Linn. Soc. 29: 23 26.
  • 49
    Smith, T.B. 1991. Natural selection on bill characters in the two bill morphs of the African finch Pyrenestes ostrinus. Evolution 44: 832 842.
  • 50
    Somers, K.M. 1986. Multivariate allometry and removal of size with principal components analysis. Syst. Zool. 35: 359 368.
  • 51
    Strauss, R.E. 1990. Patterns of quantitative variation in Lepidopteran wing morphology: the convergent groups Heliconiinae and Ithomiinae (Papilionoidea, Nymphalidae). Evolution 44: 86 103.
  • 52
    Wagner, G.P. 1984. On the eigenvalue distribution of genetic and phenotypic dispersion matrices: evidence for a non random organisation of quantitative character variation. J. Math. Biol. 21: 77 95.
  • 53
    Wright, S. 1932. General, group and special size factors. Genetics 17: 603 619.
  • 54
    Zeng, Z.-B. 1988. Long-term correlated response, interpopulational covariation, and interspecific allometry. Evolution 42: 363 374.