SEARCH

SEARCH BY CITATION

References

  • 1
    Amir, S. & Cohen, D. 1990. Optimal reproductive efforts and the timing of reproduction of annual plants in randomly varying environments. J. Theor. Biol. 147: 17 42.
  • 2
    Bertness, M.D. 1981. Pattern and plasticity in tropical hermit crab growth and reproduction. Am. Nat. 117: 754 773.
  • 3
    Blarer, A. & Doebeli, M. 1996. Heuristic optimization of the general life history problem: a novel approach. Evol. Ecol. 10: 81 96.
  • 4
    Charlesworth, B. 1994. Evolution in Age-Structured Populations, 2nd edn. Cambridge University Press., Cambridge.
  • 5
    Charnov, E.L. 1993. Life History Invariants. Oxford University Press., Oxford.
  • 6
    Charnov, E.L. 1997. Trade-off-invariant rules for evolutionarily stable life histories. Nature 387: 393 394.
  • 7
    Charnov, E.L. & Berrigan, D. 1991. Evolution of life history parameters in animals with indeterminate growth, particularly fish. Evol. Ecol. 5: 63 68.
  • 8
    Cohen, D. 1971. Maximizing final yield when growth is limited by time or by limiting resources. J. Theor. Biol. 33: 299 307.
  • 9
    Cohen, D. 1976. The optimal timing of reproduction. Am. Nat. 110: 801 807.
  • 10
    Doebeli, M. & Blarer, A. 1997. A note on the timing of tradeoffs in discrete life history models. J. Evol. Biol. 10: 107 120.
  • 11
    Engen, S. & Sæther, B.-E. 1994. Optimal allocation of resources to growth and reproduction. Theor. Popul. Biol. 46: 232 248.
  • 12
    Ferrière, R. & Gatto, M. 1995. Lyapunov exponents and the mathematics of invasion in oscillatory and chaotic populations. Theor. Popul. Biol. 48: 126 171.
  • 13
    Fiksen, Ø. 1997. Allocation patterns and diel vertical migration: modeling the optimal Daphnia. Ecology 78: 1446 1456.
  • 14
    Geritz, S.A.H., Kisdi, É., Meszéna, G., Metz, J.A.J. 1998. Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12: 35 57.
  • 15
    Hastings, A. 1978. Evolutionarily stable strategies and the evolution of life history strategies. I. Density dependent models. J. Theor. Biol. 75: 527 536.
  • 16
    Heino, M. 1997. Management of evolving fish stocks. Can. J. Fish. Aquat. Sci. 55: 1971 1982.
  • 17
    Heino, M. & Kaitala, V. 1996. Optimal resource allocation between growth and reproduction: why does indeterminate growth exists? Funct. Ecol. 10: 245 251.
  • 18
    Heino, M. & Kaitala, V. 1997a. Evolutionary consequences of density dependence on optimal maturity in animals with indeterminate growth. J. Biol. Syst. 5: 181 190.
  • 19
    Heino, M. & Kaitala, V. 1997b. Should ecological factors affect the evolution of age at maturity in freshwater clams? Evol. Ecol. 11: 67 81.
  • 20
    Heino, M., Metz, J.A.J., Kaitala, V. 1997. Evolution of mixed maturation strategies in semelparous life-histories: the crucial role of dimensionality of feedback environment. Phil. Trans. R. Soc. Lond. B 352: 1647 1655.
  • 21
    Heino, M., Metz, J.A.J., Kaitala, V. 1998. The enigma of frequency-dependent selection. Trends Ecol. Evol. 13: 367 370.
  • 22
    Jensen, A.L. 1996. Beverton and Holt life history invariants result from optimal trade-off of reproduction and survival. Can. J. Fish. Aquat. Sci. 53: 820 822.
  • 23
    Jokela, J. 1996. Within-season reproductive and somatic energy allocation in a freshwater clam, Anodonta piscinalis. Oecologia 105: 167 174.
  • 24
    Jokela, J. & Mutikainen, P. 1995. Phenotypic plasticity and priority rules for energy allocation in a freshwater clam: a field experiment. Oecologia 104: 122 132.
  • 25
    King, D. & Roughgarden, J. 1982. Graded allocation between vegetative and reproductive growth for annual plants in growing seasons of random length. Theor. Popul. Biol. 22: 1 16.
  • 26
    Kitahara, T., Hiyama, Y., Tokai, T. 1987. A preliminary study on quantitative relations among growth, reproduction and mortality in fishes. Res. Pop. Ecol. 29: 85 95.
  • 27
    Kozłowski, J. 1991. Optimal energy allocation models – an alternative to the concepts of reproductive effort and cost of reproduction. Acta Oecol. 12: 11 33.
  • 28
    Kozłowski, J. 1992. Optimal allocation of resources to growth and reproduction: Implications for age and size at maturity. Trends Ecol. Evol. 6: 15 19.
  • 29
    Kozłowski, J. 1993. Measuring fitness in life-history studies. Trends Ecol. Evol. 8: 84 85.
  • 30
    Kozłowski, J. 1996. Optimal allocation of resources explains interspecific life-history patterns in animals with indeterminate growth. Proc. R. Soc. Lond. B 263: 559 566.
  • 31
    Kozłowski, J. & Teriokhin, A.T. 1999. Energy allocation between growth and reproduction: the Pontryagin maximum principle solution for the case of age- and season-dependent mortality. Evol. Ecol. Res. in press.
  • 32
    Kozłowski, J. & Uchmañski, J. 1987. Optimal individual growth and reproduction in perennial species with indeterminate growth. Evol. Ecol. 1: 214 230.
  • 33
    Kozłowski, J. & Ziółko, M. 1988. Gradual transition from vegetative to reproductive growth is optimal when the maximum rate of reproductive growth is limited. Theor. Popul. Biol. 34: 118 129.
  • 34
    Kusano, T. 1982. Postmetamorphic growth, survival and age-at-first-maturity of the salamander, Hynobius nebulosus tokyoensis in relation to a consideration on the optimal timing of first reproduction. Res. Pop. Ecol. 24: 329 344.
  • 35
    Law, R. & Grey, D.R. 1989. Evolution of yields from populations with age-specific cropping. Evol. Ecol. 3: 343 359.
  • 36
    León, J.A. 1976. Life histories as adaptive strategies. J. Theor. Biol. 60: 301 335.
  • 37
    Mangel, M. 1996. Life history invariants, age at maturity, and the ferox trout. Evol. Ecol. 10: 249 263.
  • 38
    Mangel, M. & Clark, C.W. 1988. Dynamic Modeling in Behavioral Ecology. Princeton University Press, Princeton.
  • 39
    Maynard Smith, J. & Price, G.R. 1973. The logic of animal conflict. Nature 246: 15 18.
  • 40
    Metz, J.A.J., Geritz, S.A.H., Meszéna, G., Jacobs, F.J.A., Van Heerwaarden, J.S. 1996a. Adaptive dynamics: A geometrical study of the consequences of nearly faithful reproduction. In: Stochastic and Spatial Structures of Dynamical Systems (S. J. van Strien & S. M. Verduyn Lunel, eds), pp. 183–231. KNAW Verhandelingen, Amsterdam.
  • 41
    Metz, J.A.J., Mylius, S.D., Diekmann, O. 1996b. When does evolution optimise? On the relation between types of density dependence and evolutionarily stable life history parameters. IIASA Working Paper WP-96–04. IIASA, Laxenburg, Austria.
  • 42
    Metz, J.A.J., Nisbet, R.M., Geritz, S.A.H. 1992. How should we define ‘fitness’ for general ecological scenarios? Trends Ecol. Evol. 7: 198 202.
  • 43
    Myers, R.A. & Doyle, R.W. 1983. Predicting natural mortality rates and reproduction-mortality trade-offs from fish life history data. Can. J. Fish. Aquat. Sci. 40: 612 620.
  • 44
    Mylius, S.D. & Diekmann, O. 1995. On evolutionarily stable life histories, optimization and the need to be specific about density dependence. Oikos 74: 218 224.
  • 45
    Parker, G.A. & Maynard Smith, J. 1990. Optimality theory in evolutionary biology. Nature 348: 27 33.
  • 46
    Pásztor, L., Meszéna, G., Kisdi, É. 1996. R0 or r: a matter of taste? J. Evol. Biol. 9: 511 518.
  • 47
    Perrin, N. 1989. Reproductive allocation and size constraints in the cladoceran Simocephalus vetulus (Mueller). Funct. Ecol. 3: 279 283.
  • 48
    Perrin, N. & Rubin, J.F. 1990. On dome-shaped norms of reaction for size-to-age at maturity in fishes. Funct. Ecol. 4: 53 57.
  • 49
    Perrin, N., Ruedi, M., Saiah, H. 1987. Why is the cladoceran Simocephalus vetulus (Müller) not a ‘bang-bang strategist’? A critique of the optimal-body-size model. Funct. Ecol. 1: 223 228.
  • 50
    Perrin, N. & Sibly, R.M. 1993. Dynamic models of energy allocation and investment. Ann. Rev. Ecol. Syst. 24: 379 410.
  • 51
    Perrin, N., Sibly, R.M., Nichols, N.K. 1993. Optimal growth strategies when mortality and production rates are size-dependent. Evol. Ecol. 7: 576 592.
  • 52
    Pugliese, A. & Kozłowski, J. 1990. Optimal patterns of growth and reproduction for perennial plants with persisting or not persisting vegetative parts. Evol. Ecol. 4: 75 89.
  • 53
    Rand, D.A., Wilson, H.B., McGlade, J.M. 1994. Dynamics and evolution: evolutionarily stable attractors, invasion exponents and phenotypic dynamics. Phil. Trans. R. Soc. Lond. B 343: 261 283.
  • 54
    Roff, D.A. 1983. An allocation model of growth and reproduction in fish. Can. J. Fish. Aquat. Sci. 40: 1395 1404.
  • 55
    Roff, D.A. 1984. The evolution of life history parameters in teleosts. Can. J. Fish. Aquat. Sci. 41: 989 1000.
  • 56
    Roff, D.A. 1992. The Evolution of Life Histories. Theory and Analysis. Chapman & Hall, New York.
  • 57
    Sibly, R., Calow, P., Nichols, N. 1985. Are patterns of growth adaptive? J. Theor. Biol. 112: 553 574.
  • 58
    Stearns, S.C. 1992. The Evolution of Life Histories. Oxford University Press, Oxford.
  • 59
    Sumida, B.H., Houston, A.I., McNamara, J.M., Hamilton, W.D. 1990. Genetic algorithms and evolution. J. Theor. Biol. 147: 59 84.
  • 60
    Tankersley, R.A. & Dimock, R.V., Jr. 1993. The effect of larval brooding on the filtration rate and particle-retention efficiency of Pyganodon cataracta (Bivalvia, Unionidae). Can. J. Zool. 71: 1934 1944.
  • 61
    Taylor, B.E. & Gabriel, W. 1992. To grow or not to grow: optimal resource allocation for Daphnia. Am. Nat. 139: 248 266.
  • 62
    Taylor, B.E. & Gabriel, W. 1993. Optimal adult growth of Daphnia in a seasonal environment. Funct. Ecol. 7: 513 521.
  • 63
    Taylor, H.M., Gourley, R.S., Lawrence, C.E., Kaplan, R.S. 1974. Natural selection of life history attributes: an analytical approach. Theor. Popul. Biol. 5: 104 122.
  • 64
    Vance, R.R. 1992. Optimal somatic growth and reproduction in a limited, constant environment: The general case. J. Theor. Biol. 157: 51 70.
  • 65
    Vøllestad, L.A., L’Abée-Lund, J.H., Sægrov, H. 1993. Dimensionless numbers and life history variation in brown trout. Evol. Ecol. 7: 207 218.
  • 66
    Ware, D.M. 1980. Bioenergetics of stock and recruitment. Can. J. Fish. Aquat. Sci. 37: 1012 1024.
  • 67
    Wootton, R.J. 1990. Ecology of Teleost Fishes. Chapman & Hall, London.