Mechanisms of incomplete prezygotic reproductive isolation in an intertidal snail: testing behavioural models in wild populations


Emilio Rolán-Alvarez Departamento de Bioquímica, Genética e Inmunología, Facultad de Ciencias, Universidad de Vigo, 36200 Vigo, Spain. Tel: +34 986 812578; fax: 34 986 812556; e-mail:


Two morphs (ecotypes) of the marine snail Littorina saxatilis coexist along Galician exposed rocky shores. They hybridize, but gene flow is impeded by a partial prezygotic reproductive barrier, and we have earlier suggested that this is a case of incipient sympatric speciation. To assess the mechanisms of prezygotic reproductive isolation, we estimated deviations from random mating (sexual selection and sexual isolation) of sympatric snails in 13 localities on the shore, and performed mate choice experiments in the laboratory. We also investigated the microdistribution of both morphs over patches of barnacles and blue mussels in the hybridization zone. We used computer simulations to separate the mechanisms contributing to reproductive isolation.

On the shores sampled, male–female pairs were strongly assortative both with respect to morphs (mean Yule's V = 0.77) and size (mean Pearson's = 0.47). In the laboratory, males of both morphs mounted other snails and mated other males and juveniles at random. However, mature females of equal sizes mated assortatively with respect to morph. The two morphs were nonrandomly distributed over barnacle and mussel patches in the hybridization zone. Monte Carlo simulations showed that this microdistribution could explain about half the morph and size relationships in male–female pairs, while a simple rejection mechanism, rejecting the first 1–3 mates if they were of contrasting morphs, accounted for the remaining part of the reproductive isolation, and for parts of the size relationships found between mates. A size discriminant mate choice mechanism may also, to a lesser extent, contribute to the sexual isolation. Sexual selection was observed for female size (larger ones being favoured) and among certain morphs, but distinct biological mechanisms may cause these processes.