SEARCH

SEARCH BY CITATION

References

  • 1
    Barton, N.H. 1995. A general model for the evolution of recombination. Genet. Res. 65: 123 144.
  • 2
    Bell, G. 1982. The Masterpiece of Nature: the Evolution and Genetics of Sexuality. University of California Press, Berkeley.
  • 3
    Bell, G. 1985. Two theories of sex and variation. Experientia 41: 1235 1245.
  • 4
    Bell, G. & Maynard Smith, J. 1987. Short term selection for recombination among mutually antagonistic species. Nature 328: 66 68.
  • 5
    Bernstein, H, Hopf, F.A., Michod, R.E. 1987. The Molecular basis of the evolution of sex. Adv. Genet 24: 323 370.
  • 6
    Bierzychudek, P. 1987. Pollinators increase the cost of sex by avoiding female flowers. Ecology 68: 444 447.
  • 7
    Bolger, D.T. & Case, T.J. 1994. Divergent ecology of sympatric clones of the asexual gecko, Lepidodactylus lugubris. Oecologia 100: 397 405.
  • 8
    Bremermann, H.J. 1980. Sex and polymorphism as strategies in host–pathogen interactions. J. Theor. Biol. 87: 671 702.
  • 9
    Burt, A. & Bell, G. 1987. Mammalian chiasma frequencies as a test of two theories of recombination. Nature 326: 803 805.
  • 10
    Butcher, D. 1995. Muller’s ratchet, epistasis and mutation effects. Genetics 141: 431 437.
  • 11
    Charlesworth, B. 1976. Recombination modification in a fluctuating environment. Genetics 83: 181 195.
  • 12
    Charlesworth, B. 1987. Red Queen versus Tangled Bank models. Nature 330: 116 117.
  • 13
    Charlesworth, B. 1989. The evolution of sex and recombination. Trends Ecol. Evol. 4: 264 267.
  • 14
    Charlesworth, B. 1990. Mutation-selection balance and the evolutionary advantage of sex and recombination. Genet. Res. 55: 199 221.
  • 15
    Charlesworth, B. 1993. Directional selection and the evolution of sex and recombination. Genet. Res. 61: 205 224.
  • 16
    Charlesworth, B. & Barton, N.H. 1996. Recombination load associated with selection for increased recombination. Genet. Res. 67: 27 41.
  • 17
    Charlesworth, B, Charlesworth, D., Morgan, T.M. 1990. Genetic loads and estimates of mutation rates in highly inbred plant populations. Nature 347: 380 382.
  • 18
    Charlesworth, D, Lyons, E.E., Litchfield, L.B. 1994. Inbreeding depression in two highly inbreeding populations of Leavenworthia. Proc. R. Soc. Lond. B 258: 209 214.
  • 19
    Charnov, E.L. 1982. The Theory of Sex Allocation. Princeton University Press, Princeton.
  • 20
    Clayton, D.H. & Moore, J. 1997. Host–Parasite Evolution. General Principles and Avian Models. Oxford University Press, Oxford.
  • 21
    Crow, J.F. 1970. Genetic loads and the cost of natural selection. In: Mathematical Topics in Population Genetics (K. I. Kojima, ed.), pp. 128–177. Springer Verlag, Berlin.
  • 22
    Crow, J.F. 1992. An advantage of sexual reproduction in a rapidly changing environment. J. Hered. 83: 169 173.
  • 23
    Crow, J.F. & Simmons, M.J. 1983. The mutation load in Drosophila. In: The Genetics and Biology of Drosophila (M. Ashburner, H. L. Carson & J. N. Thompson, eds), pp. 1–35. Academic Press, London.
  • 24
    Deng, H.-W. & Lynch, M. 1997. Inbreeding depression and inferred deleterious-mutation parameters in Daphnia. Genetics 147: 147 155.
  • 25
    Drake, J.W, Charlesworth, B, Charlesworth, D., Crow, J.F. 1998. Rates of spontaneous mutation. Genetics 148: 1667 1686.
  • 26
    Dudash, M.R. 1990. Relative fitness of selfed and outcrossed progeny in a self-compatible, protandrous species, Sabatia Angularis L. (Gentianaceae): a comparison in three environments. Evolution 44: 1129 1139.
  • 27
    Dybdahl, M.F. & Lively, C.M. 1995. Diverse endemic and polyphyletic clones in mixed populations of the freshwater snail, Potamopyrgus antipodarum. J. Evol. Biol. 8: 385 398.
  • 28
    Dybdahl, M.F. & Lively, C.M. 1998. Host–parasite coevolution: evidence for rare advantage and time-lagged selection in a natural population. Evolution 52: 1057 1066.
  • 29
    Elena, S.F. & Lenski, R.E. 1997. Test of synergistic interactions among deleterious mutations in bacteria. Nature 390: 395 398.
  • 30
    Falush, D. 1998. The evolution of recombination rates caused by recurrent deleterious mutations. PhD Thesis, University of London.
  • 31
    Feldman, M.W, Otto, S.P., Christiansen, F.B. 1997. Population genetic perspectives on the evolution of recombination. Annu. Rev. Genet. 30: 261 295.
  • 32
    Flexon, P.B. & Rodell, C.F. 1982. Genetic recombination and directional selection for DDT resistance in Drosophila melanogaster. Nature 298: 672 674.
  • 33
    Fox, J.A, Dybdahl, M.F, Jokela, J., Lively, C.M. 1996. Genetic structure of coexisting sexual and clonal subpopulations in a freshwater snail (Potamopyrgus antipodarum) . Evolution 50: 1541 1548.
  • 34
    Gemmill, A, Viney, M.E., Read, A.F. 1997. Host immune status determines sexuality in a parasitic nematode. Evolution 51: 393 401.
  • 35
    Gillespie, J.H. 1991. The Causes of Molecular Variation. Oxford University Press, Oxford.
  • 36
    Glesener, R.R. & Tilman, D. 1978. Sexuality and the components of environmental uncertainty: clues from geographic parthenogenesis in terrestrial animals. Am. Nat. 112: 659 673.
  • 37
    Grenfell, B. & Dobson, A.P. 1995. Ecology of Infectious Diseases in Natural Populations. Cambridge University Press, Cambridge.
  • 38
    Haldane, J.B.S. 1932. The Causes of Evolution. Longmans green, London.
  • 39
    Hamilton, W.D. 1980. Sex vs non-sex vs parasite. Oikos 35: 282 290.
  • 40
    Hamilton, W.D. 1993. Haploid dynamic polymorphism in a host with matching parasites: effects of mutation/subdivision, linkage, and patterns of selection. J. Hered. 84: 328 338.
  • 41
    Hamilton, W.D, Axelrod, R., Tanese, R. 1990. Sexual reproduction as an adaptation to resist parasites. Proc. Natl. Acad. Sci. USA 87: 3566 3573.
  • 42
    Howard, R.S. 1994. Selection against deleterious mutations and the maintenance of biparental sex. Theor. Pop. Biol. 45: 313 323.
  • 43
    Howard, R.S. & Lively, C.M. 1994. Parasitism, mutation accumulation and the maintenance of sex. Nature 367: 554 557.
  • 44
    Howard, R.S. & Lively, C.M. 1998. The maintenance of sex by parasitism and mutation accumulation under epistatic fitness functions. Evolution 52: 604 610.
  • 45
    Hurst, L.D. & Peck, J.R. 1996. Recent advances in understanding of the evolution and maintenance of sex. Trends Ecol. Evol. 11: 46 53.
  • 46
    Hurst, L.D. & Smith, N.G.C. 1998. The evolution of concerted evolution. Proc. Roy. Soc. Lond. B 265: 121 127.
  • 47
    Hutson, V. & Law, R. 1981. Evolution of recombination in populations experiencing frequency-dependent selection with a time delay. Proc. Roy. Soc. Lond. B 213: 345 359.
  • 48
    Jaenike, J. 1978. An hypothesis to account for the maintenance of sex within populations. Evol. Theory 3: 191 194.
  • 49
    Johnston, M.O. & Schoen, D.J. 1995. Mutation rates and dominance levels of genes affecting total fitness in two angiosperm species. Science 267: 226 229.
  • 50
    Jokela, J. & Lively, C.M. 1995. Parasites, sex, and early reproduction in a mixed population of freshwater snails. Evolution 49: 1268 1271.
  • 51
    Jokela, J, Lively, C.M, Dybdahl, M.F., Fox, J.A. 1997. Evidence for a cost of sex in the freshwater snail Potamopyrgus antipodarum. Ecology 78: 452 460.
  • 52
    Keightley, P.D. 1994. The distribution of mutation effects on viability in Drosophila. Genetics 138: 1315 1322.
  • 53
    Keightley, P.D. 1996. Nature of deleterious mutation load in Drosophila. Genetics 144: 1993 1999.
  • 54
    Keightley, P.D. 1998. Inference of genome wide mutation rates and distributions of mutation effects for fitness traits: a simulation study. Genetics 150: 1283 1293.
  • 55
    Keightley, P.D. & Caballero, A. 1997. Genomic mutation rates for lifetime reproductive output and lifespan in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 94: 3823 3827.
  • 56
    Keightley, P.D. & Ohnishi, O. 1998. EMS-induced polygenic mutation rates for nine quantitative characters in Drosophila melanogaster. Genetics 148: 753 766.
  • 57
    Kelley, S.E. 1993. Viruses and the advantage of sex in Anthoxanthum odoratum: a review. Pl. Sp. Biol. 8: 217 223.
  • 58
    Kelley, S.E. 1994. Viral pathogens and the advantage of sex in the perennial grass Anthoxanthum odoratum. Phil. Trans. R. Soc. Lond. B 346: 295 302.
  • 59
    Kelley, S.E, Antonovics, J., Schmitt, J. 1988. A test of the short-term advantage of sexual reproduction. Nature 331: 714 716.
  • 60
    Kibota, T.T. & Lynch, M. 1996. Estimate of the genomic mutation rate deleterious to overall fitness in E. coli. Nature 381: 694 696.
  • 61
    Kimura, M. & Maruyama, T. 1966. The mutational load with epistatic gene interactions in fitness. Genetics 54: 1303 1312.
  • 62
    Koella, J.C. 1993. Ecological correlates of chiasma frequency and recombination index of plants. Biol. J. Linn. Soc. 48: 227 238.
  • 63
    Kondrashov, A.S. 1982. Selection against harmful mutations in large sexual and asexual populations. Genet. Res. 40: 325 332.
  • 64
    Kondrashov, A.S. 1984. Deleterious mutations as an evolutionary factor I The advantage of recombination. Genet. Res. 44: 199 218.
  • 65
    Kondrashov, A.S. 1988. Deleterious mutations and the evolution of sexual reproduction. Nature 336: 435 441.
  • 66
    Kondrashov, A.S. 1993. Classification of hypotheses on the advantage of amphimixis. J. Hered. 84: 372 387.
  • 67
    Kondrashov, A.S. 1994a. Muller’s ratchet under epistatic selection. Genetics 136: 1469 1473.
  • 68
    Kondrashov, A.S. 1994b. Sex and deleterious mutation. Nature 369: 99 100.
  • 69
    Kondrashov, A.S. 1995. Modifiers of mutation-selection balance: general approach and the evolution of mutation rates. Genet. Res. 66: 53 70.
  • 70
    Kondrashov, A.S. & Houle, D. 1994. Genotype–environment interactions and the estimation of the genomic mutation rate in Drosophila melanogaster. Proc. Roy. Soc. Lond. B 258: 221 227.
  • 71
    Kondrashov, A.S. & Yampolsky, L.Y. 1996. Evolution of amphimixis and recombination under fluctuating selection in one and many traits. Genet. Res. 68: 165 173.
  • 72
    Korol, A.B. & Iliadi, K.G. 1994. Increased recombination frequencies resulting from directional selection for geotaxis in Drosophila. Heredity 72: 64 68.
  • 73
    Ladle, R.J. 1992. Parasites and sex: catching the red queen. Trends Ecol. Evol. 7: 405 408.
  • 74
    Leigh, E.G. Jr. 1970. Natural selection and mutability. Am. Nat. 104: 301 305.
  • 75
    Lively, C.M. 1987. Evidence from a New Zealand snail for the maintenance of sex by parasitism. Nature 328: 519 521.
  • 76
    Lively, C.M. 1992. Parthenogenesis in a freshwater snail: reproductive assurance versus parasitic release. Evolution 46: 907 913.
  • 77
    Lively, C.M. & Howard, R.S. 1994. Selection by parasites for clonal diversity and mixed mating. Philos. Trans. R. Soc. Lond. B 346: 271 281.
  • 78
    Lynch, M., Burger, R., Butcher, D., Gabriel, W. 1993. The mutational meltdown in asexual populations. J. Hered. 84: 339 344.
  • 79
    Malmberg, R.L. 1977. The evolution of epistasis and the advantage of recombination in populations of bacteriophage T4. Genetics 86: 607 621.
  • 80
    Manning, J.T. & Thompson, D.J. 1984. Muller’s ratchet accumulation of favourable mutations. Acta Biotheor. 33: 219 225.
  • 81
    May, R.M. & Anderson, R. 1983. Epidemiology and genetics in the coevolution of parasites and hosts. Proc. Roy. Soc. Lond. B 219: 281 313.
  • 82
    Maynard Smith, J. 1978. The Evolution of Sex. Cambridge University Press, Cambridge.
  • 83
    Maynard Smith, J. 1988a. Selection for recombination in a polygenic model: the mechanism. Genet. Res. 51: 59 63.
  • 84
    Maynard Smith, J. 1988b. The evolution of recombination. In: The Evolution of Sex: an Examination of Current Ideas (R. E. Michod & B. R. Levin, eds), pp. 106–125. Sinauer, Massachusetts, USA.
  • 85
    McPhee, C.P. & Robertson, A. 1970. The effect of suppressing crossing-over on the response to selection in Drosophila melanogaster. Genet. Res. 16: 1 16.
  • 86
    McVean, G.T. & Hurst, L.D. 1997. Evidence for a selectively favourable reduction in the mutation rate of the X chromosome. Nature 386: 388 392.
  • 87
    Michod, R.E. & Levin, B.R. 1988. The Evolution of Sex. Sinauer, USA.
  • 88
    Mongold, J.A. 1992. DNA-repair and the evolution of transformation in Haemophilus influenzae. Genetics 132: 893 898.
  • 89
    Mukai, T. 1964. The genetic structure of natural populations of Drosophila melanogaster. I. Spontaneous mutation rate of polygenes controlling viability . Genetics 50: 1 19.
  • 90
    Mukai, T., Chigusa, S.I., Mettler, L.E., Crow, J.F. 1972. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics 72: 335 355.
  • 91
    Muller, H.J. 1964. The relation of recombination to mutational advance. Mut. Res. 1: 2 9.
  • 92
    Nee, S. 1989. Antagonistic co-evolution and the evolution of genotypic randomisation. J. Theor. Biol. 140: 499 518.
  • 93
    Ohnishi, O. 1977. Spontaneous and ethyl methanesulfonate-induced mutations controlling viability in Drosophila melanogaster. II. Homozygous effect of polygenic mutations. Genetics 87: 529 545.
  • 94
    Otto, S.P. & Feldman, M.W. 1997. Deleterious mutations, variable epistatic interactions, and the evolution of recombination. Theor. Popul. Biol. 51: 134 147.
  • 95
    Otto, S.P. & Michalakis, Y. 1998. The evolution of recombination in changing environments. Trends Ecol. Evol. 13: 145 151.
  • 96
    Peck, J.R. 1994. A ruby in the rubbish: beneficial mutations and the evolution of sex. Genetics 137: 597 606.
  • 97
    Peters, A.D. & Lively, C.M. in press. The Red Queen and fluctuating epistasis: a population genetic analysis of antagonistic coevolution. Am. Nat.
  • 98
    Platt, J.R. 1964. Strong inference. Science 146: 347 353.
  • 99
    Redfield, R.J. 1994. Male mutation rates and the cost of sex for females. Nature 369: 145 147.
  • 100
    Sasaki, A. & Iwasa, Y. 1987. Optimal recombination rate in fluctuating environments. Genetics 115: 377 388.
  • 101
    Schrag, S.J., Mooers, A.O., Ndifon, G.T., Read, A.F. 1994. Ecological correlates of male outcrossing ability in a simultaneous hermaphrodite snail. Am. Nat. 143: 636 655.
  • 102
    Seger, J. & Hamilton, W.D. 1988. Parasites and sex. In: The Evolution of Sex: an Examination of Current Ideas (R. E. Michod & B. R. Levin, eds), pp. 176–193. Sinauer, USA.
  • 103
    Semlitsch, R.D., Hotz, H., Guex, G.-D. 1997. Competition among tadpoles of coexisting hemiclones of hybridogenetic Rana esculenta: support for the frozen niche variation model . Evolution 51: 1249 1261.
  • 104
    Stearns, S.C. 1987. The Evolution of Sex. Oxford University Press, Oxford.
  • 105
    Sturtevant, A.H. & Mather, K. 1938. the interrelations of inversions, heterosis and recombination. Am. Nat. 72: 447 452.
  • 106
    Szathmary, E. 1993. Do deleterious mutations act synergistically? Metabolic control theory provides a partial answer. Genetics 133: 127 132.
  • 107
    Szathmary, E. & Kover, S. 1991. A theoretical test of the DNA repair hypothesis for the maintenance of sex in eukaryotes. Genet. Res. 58: 157 165.
  • 108
    Toft, C.A., Aeschlimann, A., Bolis, L. 1991. Parasite–Host Associations Coexistence or Conflict? Oxford Scientific Publications, Oxford.
  • 109
    Vrijenhoek, R.C. 1979. Factors affecting clonal diversity and coexistence. Amer. Zool. 19: 787 797.
  • 110
    Weismann, A. 1889. The significance of sexual reproduction in the theory of natural selection. In: Essays on Heredity and Kindred Biological Subjects (E. B. Poulton, S. Schönland & A. E. Shipley, eds), pp. 254–338. Oxford University Press, Oxford.
  • 111
    West, S.A., Flanagan, K.E., Godfray, H.C.J. 1996. The relationship between parasitoid size and fitness in the field, a study of Achrysocharoides zwoelferi (Hymenoptera, Eulophidae). J. Anim. Ecol. 65: 631 639.
  • 112
    West, S.A., Peters, A., Barton, N.H. 1998. Testing for epistasis between deleterious mutations. Genetics 149: 435 444.
  • 113
    Williams, G.C. 1975. Sex and Evolution. Princeton University, Princeton, New Jersey.
  • 114
    Young, J.P.W. 1981. Sib competition can favour sex in two ways. J. Theor. Biol. 88: 755 756.
  • 115
    Zeyl, C. & Bell, G. 1997. The advantage of sex in evolving yeast populations. Nature 388: 465 468.