SEARCH

SEARCH BY CITATION

References

  • 1
    Allison, P.D. 1995. Survival Analysis using the SAS System. SAS Institute, Cary, North Carolina.
  • 2
    Azevedo-Ramos, C., Van Sluys, M., Hero, J.-M., Magnusson, W.E. 1992. Influence of tadpole movement on predation by odonate naiads. J. Herp. 26: 335 338.
  • 3
    Brodie, E.D. III. 1992. Correlational selection for color pattern and antipredator behavior in the garter snake Thamnophis ordinoides. Evolution 46: 1282 1298.
  • 4
    Caldwell, J.P. 1982. Disruptive selection: a tail color polymorphism in Acris tadpoles in response to differential predation. Can. J. Zool. 60: 2818 2827.
  • 5
    Cheverud, J.M. 1982. Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution 36: 499 516.
  • 6
    Cheverud, J.M. 1988a. The evolution of genetic correlation and developmental constraints. In: Population Genetics and Evolution (G. de Jong, ed.), pp. 94–101. Springer-Verlag, Berlin.
  • 7
    Cheverud, J.M. 1988b. A comparison of genetic and phenotypic correlations. Evolution 42: 958 968.
  • 8
    Cheverud, J.M. 1996. Developmental integration and the evolution of pleiotropy. Am. Zool. 36: 44 50.
  • 9
    Cox, D.R. 1972. Regression models and life tables. J. Roy. Stat. Soc. B34: 187 220.
  • 10
    Doherty, P.A., Wassersug, R.J., Lee, J.M. 1998. Mechanical properties of the tadpole tail fin. J. Exp. Biol. 201: 2691 2699.
  • 11
    Endler, J.A. 1995. Multiple-trait coevolution and environmental gradients in guppies. Trends Ecol. Syst. 10: 22 29.
  • 12
    Frith, H.R. & Blake, R.W. 1991. Mechanics of the startle response in the northern pike Esox lucius. Can. J. Zool. 69: 2831 2839.
  • 13
    Karban, R. & Baldwin, I.T. 1997. Induced Responses to Herbivory. University of Chicago Press, Chicago, Illinois.
  • 14
    Koots, K.R. & Gibson, J.P. 1996. Realized sampling variances of estimated genetic parameters and the difference between genetic and phenotypic correlations. Genetics 143: 1409 1416.
  • 15
    Kornerup, A. & Wanscher, J.H. 1963. Methuen Handbook of Colour, 2nd edn. Methuen, London.
  • 16
    Lande, R. 1984. The genetic correlation between characters maintained by selection, linkage, and inbreeding. Gen. Res. 44: 309 320.
  • 17
    Lande, R. & Arnold, S.J. 1983. The measurement of selection on correlated characters. Evolution 37: 1210 1226.
  • 18
    Lauder, G.V. 1996. The argument from design. In: Adaptation (M. R. Rose & G. V. Lauder, eds), pp. 55–91. Academic Press, New York.
  • 19
    Lima, S.L. & Dill, L.M. 1990. Behavioral decisions made under the risk of predation: a review and prospectus. Can. J. Zool. 68: 619 640.
  • 20
    Liu, H., Wassersug, R.J., Kawachi, K. 1996. A computational fluid dynamics study of tadpole swimming. J. Exp. Biol. 199: 1245 1260.
  • 21
    McCollum, S.A. & Leimberger, J.D. 1997. Predator-induced morphological changes in an amphibian: predation by dragonflies affects tadpole color, shape, and growth rate. Oecologia 109: 615 621.DOI: 10.1007/s004420050124
  • 22
    McCollum, S.A. & Van Buskirk, J. 1996. Costs and benefits of a predator-induced polyphenism in the gray treefrog Hyla chrysoscelis. Evolution 50: 583 593.
  • 23
    Reilly, S.M. & Lauder, G.V. 1992. Morphology, behavior, and evolution: comparative kinematics of aquatic feeding in salamanders. Brain Behav. Evol. 40: 182 196.
  • 24
    Roedel, M.O. & Linsenmair, K.E. 1997. Predator-induced swarms in the tadpoles of an African savanna frog, Phrynomantis microps. Ethology 103: 902 914.
  • 25
    Roff, D.A. 1995. The estimation of genetic correlations from phenotypic correlations: a test of Cheverud’s conjecture. Heredity 74: 481 490.
  • 26
    SAS Institute. 1990. SAS/STAT User’s Guide, Version 6. SAS Institute Inc., Cary, North Carolina.
  • 27
    Skelly, D.K. 1994. Activity level and the susceptibility of anuran larvae to predation. Anim. Behav. 47: 465 468.DOI: 10.1006/anbe.1994.1063
  • 28
    Smith, D.C. & Van Buskirk, J. 1995. Phenotypic design, plasticity, and ecological performance in two tadpole species. Am. Nat. 145: 211 233.
  • 29
    Tanaka, Y. & Hisada, M. 1980. The hydraulic strike mechanism of the predatory strike in dragonfly larvae. J. Exp. Biol. 88: 1 19.
  • 30
    Tollrian, R. & Harvell, C.D. 1999. The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton, New Jersey.
  • 31
    TriMetrix. 1993. Axum Technical Graphics and Data Analysis, Reference Manual. TriMetrix Inc., Seattle, Washington.
  • 32
    Van Buskirk, J. 2000. The cost of an inducible defense in anuran larvae. Ecology 81: in press.
  • 33
    Van Buskirk, J. & McCollum, S.A. 1999. Plasticity and selection explain variation in tadpole phenotype between ponds with different predator composition. Oikos 85: 35 39.
  • 34
    Van Buskirk, J. & Relyea, R.A. 1998. Selection for phenotypic plasticity in Rana sylvatica tadpoles. Biol. J. Linn. Soc. 65: 301 328.
  • 35
    Van Buskirk, J. & Schmidt, B.R. 2000. Predator-induced plasticity in larval newts: trade-offs, selection, and variation in nature. Ecology 81: in press.
  • 36
    Van Buskirk, J., McCollum, S.A., Werner, E.E. 1997. Natural selection for environmentally induced phenotypes in tadpoles. Evolution 51: 1983 1992.
  • 37
    Van Tienderen, P.H. 1991. Evolution of generalists and specialists in spatially heterogeneous environments. Evolution 45: 1317 1331.
  • 38
    Via, S. & Lande, R. 1985. Genotype–environment interaction and the evolution of phenotypic plasticity. Evolution 39: 505 522.
  • 39
    Wagner, G.P. 1996. Homologues, natural kinds, and the evolution of modularity. Am. Zool. 36: 36 43.
  • 40
    Wainwright, P.C. 1996. Ecological explanation through functional morphology: the feeding biology of sunfishes. Ecology 77: 1336 1343.
  • 41
    Wassersug, R.J. 1989. Locomotion in amphibian larvae (or ‘Why aren’t tadpoles built like fishes?’). Am. Zool. 29: 65 84.
  • 42
    Wassersug, R.J. & Hoff, K.V.S. 1985. Kinematics of swimming in anuran larvae. J. Exp. Biol. 119: 1 30.
  • 43
    Watkins, T.B. 1996. Predator-mediated selection on burst swimming performance in tadpoles of the pacific tree frog, Pseudacris regilla. Physiol. Zool. 69: 154 167.
  • 44
    Webb, P.W. 1984. Body form, locomotion, and foraging in aquatic vertebrates. Am. Zool. 24: 107 120.
  • 45
    Webb, P.W. 1986. Locomotion and predator-prey relationships. In: Predator–Prey Relationships (M. E. Feder & G. V. Lauder, eds), pp. 24–41. University of Chicago Press, Chicago, Illinois.
  • 46
    Weihs, D. 1989. Design features and mechanics of axial locomotion of fish. Am. Zool. 29: 151 160.
  • 47
    Weihs, D. & Webb, P.W. 1984. Optimal avoidance and evasion tactics in predator–prey interactions. J. Theor. Biol. 106: 189 206.
  • 48
    Weisberg, S. 1985. Applied Linear Regression. John Wiley & Sons, New York.
  • 49
    Werner, E.E. & Anholt, B.R. 1993. Ecological consequences of the trade-off between growth and mortality rates mediated by foraging activity. Am. Nat. 142: 242 272.
  • 50
    Werner, E.E. & McPeek, M.A. 1994. Direct and indirect effects of predators on two anuran species along an environmental gradient. Ecology 75: 1368 1382.
  • 51
    Wilson, D.J. & Lefcort, H. 1993. The effect of predator diet on the alarm response of red-legged frog, Rana aurora, tadpoles . Anim. Behav. 46: 1017 1019.DOI: 10.1006/anbe.1993.1285