SEARCH

SEARCH BY CITATION

References

  • 1
    Charlesworth, B. 1994. Evolution in Age-Structured Populations, 2nd edn. Cambridge University Press, Cambridge.
  • 2
    Cockerham, C.C. & Weir, B.S. 1993. Estimation of gene flow from F-statistics . Evolution 47: 855 863.
  • 3
    Comins, H.N. 1982. Evolutionarily stable strategies for localized dispersal in two dimensions. J. Theor. Biol. 94: 579 606.
  • 4
    Cotterman, C.W. 1940, reprinted 1974. A calculus for statistico-genetics. PhD Thesis, Ohio State University, Columbus. In: Genetics and Social Structure (P. Ballonoff, ed.), pp. 157–272. Dowden, Hutchinson & Ross, Stroudsburg, Pennsylvania.
  • 5
    Crow, J.F. & Aoki, K. 1984. Group selection for a polygenic behavioural trait: estimating the degree of population subdivision. Proc. Natl. Acad. Sci. USA 81: 6073 6077.
  • 6
    Crow, J.F. & Kimura, M. 1970. An Introduction to Population Genetics Theory. Harper & Row, New York.
  • 7
    Eshel, I. 1996. On the changing concept of evolutionary population stability as a reflection of a changing point of view in the quantitative theory of evolution. J. Math. Biol. 34: 485 510.
  • 8
    Frank, S.A. 1997. The Price equation, Fisher’s fundamental theorem, kin selection, and causal analysis. Evolution 51: 1712 1729.
  • 9
    Frank, S.A. 1998. Foundations of Social Evolution. Princeton University Press,.
  • 10
    Gandon, S. & Rousset, F. 1999. Evolution of stepping stone dispersal rates. Proc. Roy. Soc. (London) B 266: 2507 2513.
  • 11
    Geritz, S.A.H., Kisdi, É., Meszéna, G., Metz, J.A.J. 1998. Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12: 35 57.
  • 12
    Grafen, A. 1985. A geometric view of relatedness. Oxford Surv. Evol. Biol. 2: 28 89.
  • 13
    Hamilton, W.D. 1964. The genetical evolution of social behavior. I. J. Theor. Biol. 7: 1 16.
  • 14
    Hamilton, W.D. 1967. Extraordinary sex ratios. Science 156: 477 488.
  • 15
    Hamilton, W.D. 1970. Selfish and spiteful behaviour in an evolutionary model. Nature 228: 1218 1220.
  • 16
    Harpending, H.C. 1979. The population genetics of interactions. Am. Nat. 113: 622 630.
  • 17
    Malécot, G. 1939. Théorie mathématique de l’hérédité mendelienne généralisée. PhD Thesis, Université de Paris.
  • 18
    Malécot, G. 1948. Les Mathématiques de L’hérédité. Masson, Paris.
  • 19
    Malécot, G. 1950. Quelques schémas probabilistes sur la variabilité des populations naturelles. Annales Université Lyon A 13: 37 60.
  • 20
    Malécot, G. 1951. Un traitement stochastique des problèmes linéaires (mutation, linkage, migration) en génétique de population. Annales Université Lyon A 14: 79 117.
  • 21
    Malécot, G. 1975. Heterozygosity and relationship in regularly subdivided populations. Theor. Popul. Biol. 8: 212 241.
  • 22
    Maruyama, T. 1970. Effective number of alleles in a subdivided population. Theor. Popul. Biol. 1: 273 306.
  • 23
    Maynard Smith, J. 1998. Evolutionary Genetics, 2nd edn. Oxford University Press, Oxford.
  • 24
    Price, G. 1970. Selection and covariance. Nature 227: 520 521.
  • 25
    Queller, D.C. 1994. Genetic relatedness in viscous populations. Evol. Ecol. 8: 70 73.
  • 26
    Rousset, F. 1996. Equilibrium values of measures of population subdivision for stepwise mutation processes. Genetics 142: 1357 1362.
  • 27
    Rousset, F. 1997. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance . Genetics 145: 1219 1228.
  • 28
    Sawyer, S. 1977. Asymptotic properties of the equilibrium probability of identity in a geographically structured population. Adv. Appl. Prob. 9: 268 282.
  • 29
    Seger, J. 1981. Kinship and covariance. J. Theor. Biol. 91: 191 213.
  • 30
    Slatkin, M. 1987. The average number of sites separating DNA sequences drawn from a subdivided population. Theor. Popul. Biol. 32: 42 49.
  • 31
    Tachida, H. 1985. Joint frequencies of alleles determined by separate formulations for the mating and mutation systems. Genetics 111: 963 974.
  • 32
    Taylor, P.D. 1989. Evolutionary stability in one-parameter models under weak selection. Theor. Popul. Biol. 36: 125 143.
  • 33
    Taylor, P.D. 1992a. Altruism in viscous populations – an inclusive fitness model. Evol. Ecol. 6: 352 356.
  • 34
    Taylor, P.D. 1992b. Inclusive fitness in a homogeneous environment. Proc. Roy. Soc. (London) B 249: 299 302.
  • 35
    Taylor, P.D. 1994. Sex ratio in a stepping stone population with sex-specific dispersal. Theor. Popul. Biol. 45: 203 218.
  • 36
    Taylor, P.D. 1996. Inclusive fitness arguments in genetic models of behaviour. J. Math. Biol. 34: 654 674.
  • 37
    Taylor, P.D. & Frank, S.A. 1996. How to make a kin selection model. J. Theor. Biol. 180: 27 37.
  • 38
    Uyenoyama, M.K. & Feldman, M. 1982. Population genetic theory of kin selection. II. The multiplicative model. Am. Nat. 120: 614 627.
  • 39
    Wright, S. 1969. Evolution and the Genetics of Populations. II. The Theory of Gene Frequencies. University of Chicago Press, Chicago.