SEARCH

SEARCH BY CITATION

Bibliography

  • 1
    Bennett, A.F. & Lenski, R.E. 1999. Experimental evolution and its role in evolutionary physiology. Amer. Zool. 39: 346362.
  • 2
    Bettencourt, B.R. & Feder, M.E. 1999. Gene conversion and natural selection drive hsp70 molecular evolution in Drosophila. Amer. Zool. 39: 83A83A.
  • 3
    Bettencourt, B.R., Feder, M.E. & Cavicchi, S. 1999. Experimental evolution of Hsp70 expression and thermotolerance in Drosophila melanogaster. Evolution 53: 484492.
  • 4
    Bijlsma, R., Bundgaard, J. & Van Putten, W.F. 1999. Environmental dependence of inbreeding depression and purging in Drosophila melanogaster. J. Evol. Biol. 12: 11251137.DOI: 10.1046/j.1420-9101.1999.00113.x
  • 5
    Cavicchi, S., Guerra, D., La Torre, V. & Huey, R.B. 1995. Chromosomal analysis of heat-shock tolerance in Drosophila melanogaster evolving at different temperatures in the laboratory. Evolution 49: 676684.
  • 6
    Feder, M.E. 1996. Ecological and evolutionary physiology of stress proteins and the stress response: the Drosophila melanogaster model. In: Animals and Temperature: Phenotypic and Evolutionary Adaptation. (I. A. Johnston & A. F. Bennett eds), pp. 79–102. Cambridge University Press, Cambridge, UK.
  • 7
    Feder, M.E. & Hofmann, G.E. 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61: 243282.
  • 8
    Feder, M.E., Cartaño, N.V., Milos, L., Krebs, R.A. & Lindquist, S.L. 1996. Effect of engineering hsp70 copy number on Hsp70 expression and tolerance of ecologically relevant heat shock in larvae and pupae of Drosophila melanogaster. J. Exp. Biol. 199: 18371844.
  • 9
    Gehring, W.J. & Wehner, R. 1995. Heat shock protein synthesis and thermotolerance in Cataglyphis, an ant from the Sahara desert. Proc. Natl. Acad. Sci. (USA) 92: 29942998.
  • 10
    Gibbs, A.G. 1999. Laboratory selection for the comparative physiologist. J. Exp. Biol. 202: 27092718.
  • 11
    Gilchrist, G.W. & Huey, R.B. 1999. The direct response of Drosophila melanogaster to selection on knockdown temperature. Heredity 83: 1529.DOI: 10.1046/j.1365-2540.1999.00533.x
  • 12
    Harshman, L.G. & Hoffmann, A.A. 2000. Laboratory selection experiments using Drosophila: what do they really tell us? Trends Ecol. Evol. 15: 3236.DOI: 10.1016/s0169-5347(99)01756-5
  • 13
    Hightower, L.E., Norris, C.E., DiIorio, P.J. & Fielding, E. 1999. Heat shock responses of closely related species of tropical and desert fish. Am. Zool. 39: 877888.
  • 14
    Hoffmann, A.A. & Merila, J. 1999. Heritable variation and evolution under favourable and unfavourable conditions. Trends Ecol. Evol. 14: 96101.DOI: 10.1016/s0169-5347(99)01595-5
  • 15
    Hoffmann, A.A. & Parsons, P.A. 1988. The analysis of quantitative variation in natural populations with isofemale strains. Genet. Sel. Evol. 20: 8798.
  • 16
    Hoffmann, A.A., Dahger, H., Hercus, M. & Berrigan, D. 1997. Comparing different measures of heat resistance in selected lines of Drosophila melanogaster. J. Ins. Physiol. 43: 393405.
  • 17
    Huey, R.B., Partridge, L. & Fowler, K. 1991. Thermal sensitivity of Drosophila melanogaster responds rapidly to laboratory natural selection. Evolution 45: 751756.
  • 18
    Huey, R.B., Crill, W.D., Kingsolver, J.G. & Weber, K.E. 1992. A method for rapid measurement of heat or cold resistance of small insects. Funct. Ecol. 6: 489494.
  • 19
    Jenkins, N.L. & Hoffmann, A.A. 1994. Genetic and maternal variation for heat resistance in Drosophila from the field. Genetics 137: 783789.
  • 20
    Krebs, R.A. 1999. A comparison of Hsp70 expression and thermotolerance in adults and larvae of three Drosophila species. Cell Stress Chap. 4: 243249.
  • 21
    Krebs, R.A. & Feder, M.E. 1997a. Natural variation in the expression of the heat-shock protein Hsp70 in a population of Drosophila melanogaster, and its correlation with tolerance of ecologically relevant thermal stress. Evolution 51: 173179.
  • 22
    Krebs, R.A. & Feder, M.E. 1997b. Deleterious consequences of Hsp70 overexpression in Drosophila melanogaster larvae. Cell Stress Chap. 2: 6071.
  • 23
    Krebs, R.A. & Feder, M.E. 1998. Hsp70 and larval thermotolerance in Drosophila melanogaster: How much is enough and when is more too much? J. Ins. Physiol. 44: 10911101.
  • 24
    Krebs, R.A. & Loeschcke, V. 1994. Costs and benefits of activation of the heat shock response in Drosophila melanogaster. Funct. Ecol. 8: 730737.
  • 25
    Krebs, R.A. & Loeschcke, V. 1995. Resistance to thermal stress in preadult Drosophila buzzatii: variation among populations and relative resistance across life stages. Biol. J. Linnean Soc. 56: 517531.
  • 26
    Krebs, R.A. & Loeschcke, V. 1996. Selection for increased resistance and acclimation to thermal stress in Drosophila buzzatii. Genetics 142: 471479.
  • 27
    Krebs, R.A., Loeschcke, V. & Håkansson, C. 1995. Resistance and acclimation to thermal stress in adult D. buzzatii following collection under ether and CO2. Dros. Inf. Serv. 76: 145148.
  • 28
    Krebs, R.A., Feder, M.E. & Lee, J. 1998. Heritability of expression of the 70kd heat-shock protein in Drosophila melanogaster and its relevance to the evolution of thermotolerance. Evolution 52: 841847.
  • 29
    Krebs, R.A., La Torre, V., Loeschcke, V. & Cavicchi, S. 1996. Heat shock resistance in Drosophila populations: analysis of variation in reciprocal cross progeny. Hereditas 124: 4755.
  • 30
    Lerman D.N. & Feder, M.E. 1999. Laboratory evolution modifies heat shock transcription factor (HSF) activation in Drosophila melanogaster. Amer. Zool. 39: 194A194A.
  • 31
    Loeschcke, V. & Krebs, R.A. 1996. Selection for heat-shock resistance in larval and adult Drosophila buzzatii: comparing direct and indirect responses on viability and development. Evolution 50: 23542359.
  • 32
    Loeschcke, V., Krebs, R.A. & Barker, J.S.F. 1994. Genetic variation for resistance and acclimation to high temperature stress in Drosophila buzzatii. Biol. J. Linn. Soc. 52: 8392.
  • 33
    Matos, M., Rose, M.R., Rocha Pite, M.T., Rego, C. & Avelar, T. 2000. Adaptation to the laboratory environment in Drosophila subobscura. Evol. Biol. 13: 919.
  • 34
    Parsell, D.A. & Lindquist, S. 1994. Heat shock proteins and stress tolerance. In: Stress Proteins in Biology and Medicine (R. I. Morimoto, A. Tissiéres & C. Georgopoulos eds), pp. 457–494. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  • 35
    Parsons, P.A. 1980. Isofemale strains and evolutionary strategies in natural populations. Evol. Biol. 13: 175217.
  • 36
    Smith, M.T. & Huey, R.B. 1991. Ether and CO2 affect heat tolerance in Drosophila melanogaster. Dros. Inf. Serv. 70: 215215.
  • 37
    Stephanou, G., Alahiotis, S.N., Christodoulou, C. & Marmaras, V.J. 1983. Adaptation of Drosophila to temperature: heat shock proteins and survival in Drosophila melanogaster. Dev. Genet. 3: 299308.
  • 38
    Stratman, R. & Markow, T.A. 1998. Resistance to thermal stress in desert Drosophila. Funct. Ecol. 12: 965970.DOI: 10.1046/j.1365-2435.1998.00270.x
  • 39
    Travisano, M., Mongold, J.A., Bennett, A.F. & Lenski, R.E. 1995. Experimental tests of the roles of adaptation, chance and history in evolution. Science 267: 8790.
  • 40
    Ulmasov, K.A., Shammakov, S., Karaev, K.K. & Evgen’Ev, M.B. 1992. Heat shock proteins and thermotolerance in lizards. Proc. Natl. Acad. Sci. (USA) 89: 16661670.
  • 41
    Vayda, M.E. & Yuan, M.L. 1994. The heat shock response of an Antarctic alga is evident at 5 degrees C. Plant. Mol. Biol. 24: 229233.
  • 42
    Welte, M.A., Tetrault, J.M., Dellavalle, R.P. & Lindquist, S.L. 1993. A new method for manipulating transgenes: engineering heat tolerance in a complex, multicellular organism. Curr. Biol. 3: 842853.
  • 43
    White, E.B., Debach, P. & Garber, J. 1970. Artificial selection for the genetic adaptation to temperature extremes in Aphytes lingnanansis (Hymenoptera: aphelinidae). Hilgardia 40: 161192.