• cytochrome b;
  • ecological niches;
  • ecomorphology;
  • Mantel tests;
  • migratory behaviour;
  • molecular phylogeny


To understand the evolution of ecological niches it is important to know whether niche evolution is constrained by phylogeny. We approached this question for Sylvia warblers by testing if closely related species are more similar in 20 ecologically relevant morphological traits than distantly related species. Phylogenetic relatedness was quantified using a molecular phylogeny based on the mitochondrial cytochrome b gene. By Principal Component Analysis (PCA) two major niche axes were extracted. We tested the individual ecomorphological traits and the positions of the species on the PCA axes for phylogenetic effects using Mantel tests. The results demonstrated small but significant phylogenetic effects only for the length of the middle toe, a trait probably correlated with locomotion. In general, however, phylogenetic effects were very weak. This suggests that ecological niches in passerine birds have the potential to evolve rapidly and are not subject to major phylogenetic constraints.