SEARCH

SEARCH BY CITATION

References

  • 1
    Nissen-Meyer, J. & Nes, I. (1997) Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. Arch. Microbiol. 167, 6777
  • 2
    Boman, H.G. (1998) Gene-encoded peptide antibiotics and the concept of innate immunity: an update review. Scand. J. Immunol. 48, 1525
  • 3
    Barra, D., M. Boman, H. (1998) Gene-encoded peptide antibiotics and innate immunity. Do ‘animalcules’ have defence budgets? FEBS Lett. 430, 130134
  • 4
    Andreu, D. , ed. (1998 )Antimicrobial peptides. Biopolymers 47, 413491DOI: 10.1002/(sici)1097-0282(1998)47:6<413::aid-bip1>3.3.co;2-d
  • 5
    Bulet, P., Hetru, C., Dimarcq, J.L., Hoffmann, D. (1999) Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol. 23, 329344
  • 6
    Lehrer, R. & Ganz, T. (1999) Antimicrobial peptides in mammalian and insect host defence. Curr. Op. Immunol. 11, 2327
  • 7
    Tossi, A. , ed. (2000) Antimicrobial peptides: from host defence to novel antiinfective agents . Biopolymers 55, 198
  • 8
    Bals, R., Wang, Z., Freeeman, T., Bafna, V., Zassloff, M., Wilson, J.M. (1998) Human beta-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. J. Clin. Invest. 102, 874880
  • 9
    Hancock, R. & Lehrer, R. (1998) Cationic peptides: a new source of antibiotics. Trends Biotechnol. 16, 8288DOI: 10.1016/s0167-7799(97)01156-6
  • 10
    White, S., Wimley, C., Selsted, M. (1995) Structure, function, and membrane integration of defensins. Curr. Opin. Struct. Biol. 5, 521527
  • 11
    Andreu, D. & Rivas, L. (1998) Animal antimicrobial peptides: an overview. Biopolymers 47, 415433DOI: 10.1002/(sici)1097-0282(1998)47:6<415::aid-bip2>3.0.co;2-d
  • 12
    Gennaro, R. & Zanetti, M. (2000) Structural features and biological activities of the cathelicidin-derived antimicrobial peptides. Biopolymers 55, 3149
  • 13
    Broekaert, W., Terras, F., Cammue, B., Osborne, R. (1995) Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol. 108, 13531358
  • 14
    Diamond, G. & Bevins, C.L. (1998) beta-Defensins: endogenous antibiotics of the innate host defense response. Clin. Immunol. Immunopathol. 88, 221225DOI: 10.1006/clin.1998.4587
  • 15
    Tossi, A., Sandri, L., Giangaspero, A. (2000) Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 55, 430DOI: 10.1002/1097-0282(2000)55:1<4::aid-bip30>3.3.co;2-d
  • 16
    Oren, Z. & Shai, Y. (1997) Selective lysis of bacteria but not mammalian cells by diastereomers of melittin: structure–function study. Biochemistry 36, 18261835
  • 17
    Matsuzaki, K. (1998) Magainins as paradigm for the mode of action of pore forming polypeptides. Bioch. Bioph. Acta 1376, 391400
  • 18
    Ludtke, S., He, K., Heller, W., Harroun, T., Yang, L., Huang, H. (1996) Membrane pores induced by magainin. Biochemistry 35, 1372313728
  • 19
    Maloy, W.L. & Kari, U.P. (1995) Structure–activity studies on magainins and other host defense peptides. Biopolymers 37, 105122
  • 20
    Saberwal, G. & Nagaraj, R. (1994) Cell-lytic and antibacterial peptides that act by perturbing the barrier function of membranes: facets of their conformational features, structure-function correlations and membrane-perturbing abilities. BBA-Rev. Biomembranes 1197, 109131
  • 21
    Tossi, A., Tarantino, C., Romeo, D. (1997) Design of synthetic antimicrobial peptides based on sequence analogy and amphipathicity. Eur. J. Biochem. 250, 549558
  • 22
    Tiozzo, E., Rocco, G., Tossi, A., Romeo, D. (1998) Wide-spectrum antibiotic activity of synthetic, amphipathic peptides. Biochem. Biophys. Res. Commun. 249, 202206DOI: 10.1006/bbrc.1998.9114
  • 23
    Eisenberg, D. (1984) Three-dimensional structure of membrane and surface proteins. Annu. Rev. Biochem. 53, 595623
  • 24
    Fauchere, J. & Pliska, V. (1981) Hydrophobic parameters π of amino-acid side-chains from the partitioning of N-acetyl-amino-acid amides. J. Chrom. 216, 7992
  • 25
    Chen, Y., Yang, J., Chau, K. (1974) Determination of the helix and beta form of proteins in aqueous solutions by circular dichroism. Biochemistry 13, 33503355
  • 26
    Gennaro, R., Skerlavaj, B., Romeo, D. (1989) Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils. Infect. Immun. 57, 31423146
  • 27
    Tossi, A., Scocchi, M., Zanetti, M., Gennaro, R., Storici, P., Romeo, D. (1997) An approach combining rapid cDNA amplification and chemical synthesis for the identification of novel, cathelicidin-derived, antimicrobial peptides in antibacterial peptide protocols. Methods Mol. Biol. 78, 133150
  • 28
    Hengstenberg, W., Penberthy, W.K., Hill, K.L., Morse, M.L. (1969) Phosphotransferase system of Staphylococcus aureus: its requirement for the accumulation and metabolism of galactosides. J. Bacteriol. 99, 383388
  • 29
    Mor, A. & Nicolas, P. (1994) The NH2-terminal α-helical domain 1–18 of dermaseptin is responsible for antimicrobial activity. J. Biol. Chem. 269, 19341939
  • 30
    Storici, P., Scocchi, M., Tossi, A., R. Zanetti, M. (1994) Chemical synthesis and biological activity of a novel antibacterial peptide deduced from a pig myeloid cDNA. FEBS Lett. 337, 303307
  • 31
    Tossi, A., Scocchi, M., Skerlavaj, B., Gennaro, R. (1994) Identification and characterization of a primary antibacterial domain in CAP18, a lipopolysaccharide binding protein from rabbit leukocytes. FEBS Lett. 339, 108112
  • 32
    Skerlavaj, B., Gennaro, R., Bagella, L., Merluzzi, L., Risso, A., Zanetti, M. (1996) Biological characterization of two novel cathelicidin-derived peptides and identification of structural requirements for their antimicrobial and cell lytic activities. J. Biol. Chem. 271, 2837528381
  • 33
    Gobbo, M., Bioni, L., Filira, F., Formaggio, F., Crisma, M., Rocchi, R., Toniolo, C., Broxterman, Q., Kamphuis, J. (1998) Helix induction potential of N-terminal α-methyl, α-amino acids. Lett. Pep. Sci. 5, 105107
  • 34
    Krause, E., Beyermann, M., Dathe, M., Rothemund, S., Bienert, M. (1995) Location of an amphipathic alpha-helix in peptides using reversed-phase HPLC retention behavior of d-amino acid analogs. Anal. Chem. 67, 252258
  • 35
    Bessalle, R., Kapitkovsky, A., Gorea, A., Shalit, I., Fridkin, M. (1990) All-d-magainin: chirality, antimicrobial activity and proteolytic resistance. FEBS Lett. 274, 151155
  • 36
    Merrifield, R., Juvvadi, P., Andreu, D., Ubach, J., Boman, A., Boman, H. (1995) Retro and retroenantio analogs of cecropin-melittin hybrids. Proc. Natl Acad. Sci. USA 92, 34493453
  • 37
    Merrifield, E., Mitchell, S., Ubach, J., Boman, H., Andreu, D., Merrifield, R. (1995) d-Enantiomers of 15-residue cecropin A-melittin hybrids. Int. J. Pept. Protein Res. 46, 214220
  • 38
    Dathe, M., Wieprecht, T., Nikolenko, H., Handel, L., Maloy, W.L., MacDonald, D.L., Beyermann, M., Bienert, M. (1997) Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and haemolytic activity of amphipathic helical peptides. FEBS Lett. 403, 208212
  • 39
    Blondelle, S.E. & Houghten, R.A. (1992) Design of model amphipathic peptides having potent antimicrobial activities. Biochemistry 31, 1268812694
  • 40
    Christensen, B., Fink, J., Merrifield, R.B., Mauzerall, D. (1988) Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc. Natl Acad. Sci. USA 85, 50725076
  • 41
    Matsuzaki, K., Murase, O., Fujii, N., Miyajima, K. (1995) Translocation of a channel-forming antimicrobial peptide, magainin 2, across lipid bilayers by forming a pore. Biochemistry 34, 65216526
  • 42
    Hancock, R.E. & Scott, M.G. (2000) The role of antimicrobial peptides in animal defenses. Proc. Natl Acad. Sci. USA 97, 88568861DOI: 10.1073/pnas.97.16.8856
  • 43
    Vaara, M. (1992) Agents that increase the permeability of the outer membrane. Microbiol. Rev. 56, 395411
  • 44
    Groisman, E. & Aspedon, A. (1997) The genetic basis of microbial resistance to antimicrobial peptides. Methods Mol. Biol. 78, 205215
  • 45
    Guo, L., Lim, K., Podje, C., Daniel, M., Gunn, J., Hackett, M., Miller, S. (1998) Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell 95, 189198
  • 46
    Sidorczyk, Z., Zähringer, U., Rietschel, E.Th (1983) Chemical structure of the lipid A component of the lipopolysaccharide from Proteus mirabilis Re-mutant. Eur. J. Biochem. 137, 1522
  • 47
    Dathe, M., Schumann, M., Wieprecht, T., Winkler, A., Beyermann, M., Krause, E., Matsuzaki, K., Murase, O., Bienert, M. (1996) Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Biochemistry 35, 1261212622
  • 48
    Matsuzaki, K., Sugishita, K., Fujii, N., Miyajima, K. (1995) Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry 34, 34233429
  • 49
    Wieprecht, T., Beyermann, M., Seelig, J. (1999) Binding of antibacterial magainin peptides to electrically neutral membranes: thermodynamics and structure. Biochemistry 38, 1037710387DOI: 10.1021/bi990913+
  • 50
    Wimley, W. & White, S. (1993) Membrane partitioning: distinguishing bilayer effects from the hydrophobic effect. Biochemistry 32, 63086312
  • 51
    Ladokhin, A. & White, S. (1998) Folding of amphipathic alpha-helices on membranes: energetics of helix formation by melittin. J. Mol Biol. 285, 13631369DOI: 10.1006/jmbi.1998.2346
  • 52
    Wu, M., Maier, E., Benz, R., Hancock, R.E. (1999) Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 38, 72357242
  • 53
    Lohner, K. & Epand, R. (1997) Membrane interactions of hemolytic and antibacterial peptides. Adv. Biophys. Chem. 6, 5366
  • 54
    Matsuzaki, K., Nakamura, A., Murase, O., Sugishita, K., Fujii, N., Miyajima, K. (1997) Modulation of magainin 2–lipid bilayer interactions by peptide charge. Biochemistry 36, 21042111DOI: 10.1021/bi961870p