• 1
    Waters, E.R., Lee, G.J. & Vierling, E. (1996) Evolution, structure and function of the small heat shock proteins in plants. J. Exp. Bot. 47, 325338.
  • 2
    Arrigo, A.-P. & Landry, J. (1994) Expression and Function of the Low-molecular-weight Heat Shock Proteins. In The Biology of Heat Shock Proteins and Molecular Chaperones (Morimoto, R.I., Tissières, A. & Georgopoulos, C., eds), pp. 335373, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  • 3
    Ehrnsperger, M., Buchner, J. & Gaestel, M. (1998) Structure and Function of Small Heat-Shock Proteins. In: Molecular Chaperones in the Life Cycle of Proteins (Fink, A.L. & Goto, Y., eds), pp. 533575. Marcel Dekker, New York.
  • 4
    Münchbach, M., Nocker, A. & Narberhaus, F. (1999) Multiple small heat shock proteins in rhizobia. J. Bacteriol. 181, 8390.
  • 5
    de Jong, W.W., Caspers, G.J. & Leunissen, J.A.M. (1998) Genealogy of the α-crystallin – small heat-shock protein superfamily. Int. J. Biol. Macromol. 22, 151162.
  • 6
    Lee, G.J., Roseman, A.M., Saibil, H.R. & Vierling, E. (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J. 16, 659671.
  • 7
    Ehrnsperger, M., Graber, S., Gaestel, M. & Buchner, J. (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J. 16, 221229.
  • 8
    Veinger, L., Diamant, S., Buchner, J. & Goloubinoff, P. (1998) The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J. Biol. Chem. 273, 1103211037.
  • 9
    Horwitz, J. (1992) α-crystallin can function as a molecular chaperone. Proc. Natl Acad. Sci. U.S.A. 89, 1044910453.
  • 10
    Kim, R., Kim, K.K., Yokota, H. & Kim, S.H. (1998) Small heat shock protein of Methanococcus jannaschii, a hyperthermophile. Proc. Natl Acad. Sci. U.S.A. 95, 91299133.
  • 11
    Chang, Z.Y., Primm, T.P., Jakana, J., Lee, I.H., Serysheva, I., Chiu, W., Gilbert, H.F. & Quiocho, F.A. (1996) Mycobacterium tuberculosis 16-kDa antigen (Hsp16.3) functions as an oligomeric structure in vitro to suppress thermal aggregation. J. Biol. Chem. 271, 72187223.
  • 12
    Lee, G.J., Pokala, N. & Vierling, E. (1995) Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J. Biol. Chem. 270, 1043210438.
  • 13
    Studer, S. & Narberhaus, F. (2000) Chaperone activity and homo- and hetero-oligomer formation of bacterial small heat shock proteins. J. Biol. Chem. 275, 3721237218.
  • 14
    Kim, K.K., Kim, R. & Kim, S.H. (1998) Crystal structure of a small heat-shock protein. Nature 394, 595599.
  • 15
    Roy, S.K., Hiyama, T. & Nakamoto, H. (1999) Purification and characterization of the 16-kDa heat-shock-responsive protein from the thermophilic cyanobacterium Synechococcus vulcanus, which is an α-crystallin-related, small heat shock protein. Eur. J. Biochem. 262, 406416.
  • 16
    Michelini, E.T. & Flynn, G.C. (1999) The unique chaperone operon of Thermotoga maritima: Cloning and initial characterization of a functional Hsp70 and small heat shock protein. J.Bacteriol. 181, 42374244.
  • 17
    Ehrnsperger, M., Lilie, H., Gaestel, M. & Buchner, J. (1999) The dynamics of Hsp25 quaternary structure – structure and function of different oligomeric species. J. Biol. Chem. 274, 1486714874.
  • 18
    Groenen, P.J., Merck, K.B., de Jong, W.W. & Bloemendal, H. (1994) Structure and modifications of the junior chaperone α-crystallin. From lens transparency to molecular pathology. Eur. J. Biochem. 225, 119.
  • 19
    Bova, M.P., Ding, L.L., Horwitz, J. & Fung, B.K.K. (1997) Subunit exchange of αA-crystallin. J. Biol. Chem. 272, 2951129517.
  • 20
    Haley, D.A., Horwitz, J. & Stewart, P.L. (1998) The small heat-shock protein, αB-crystallin, has a variable quaternary structure. J. Mol. Biol. 277, 2735.
  • 21
    Haley, D.A., Bova, M.P., Huang, Q.L., Mchaourab, H.S. & Stewart, P.L. (2000) Small heat-shock protein structures reveal a continuum from symmetric to variable assemblies. J. Mol. Biol. 298, 261272.
  • 22
    Shearstone, J.R. & Baneyx, F. (1999) Biochemical characterization of the small heat shock protein IbpB from Escherichia coli. J.Biol. Chem. 274, 99379945.
  • 23
    Caspers, G.J., Leunissen, J.A. & de Jong, W.W. (1995) The expanding small heat-shock protein family, and structure predictions of the conserved ‘α-crystallin domain’. J. Mol. Evol. 40, 238248.
  • 24
    Kokke, B.P.A., Leroux, M.R., Candido, E.P.M., Boelens, W.C. & de Jong, W.W. (1998) Caenorhabditis elegans small heat-shock proteins Hsp12.2 and Hsp12.3 form tetramers and have no chaperone-like activity. FEBS Lett. 433, 228232.
  • 25
    Leroux, M.R., Ma, B.J., Batelier, G., Melki, R., Peter, E. & Candido, M. (1997) Unique structural features of a novel class of small heat shock proteins. J. Biol. Chem. 272, 1284712853.
  • 26
    Bova, M.P., Mchaourab, H.S., Han, Y. & Fung, B.K.K. (2000) Subunit exchange of small heat shock proteins – analysis of oligomer formation of αA-crystallin and Hsp27 by fluorescence resonance energy transfer and site-directed truncations. J. Biol. Chem. 275, 10351042.
  • 27
    Andley, U.P., Mathur, S., Griest, T.A. & Petrash, J.M. (1996) Cloning, expression and chaperone-like activity of human αA-crystallin. J. Biol. Chem. 271, 3197331980.
  • 28
    Derham, B.K., van Boekel, M.A., Muchowski, P.J., Clark, J.I., Horwitz, J., Hepburne-Scott, H.W., de Jong, W.W., Crabbe, M.J. & Harding, J.J. (2001) Chaperone function of mutant versions of αA- and αB-crystallin prepared to pinpoint chaperone binding sites. Eur. J. Biochem. 268, 713721.
  • 29
    Muchowski, P.J., Wu, G.J.S., Liang, J.J.N., Adman, E.T. & Clark, J.I. (1999) Site-directed mutations within the core ‘α-crystallin’ domain of the small heat-shock protein, human αB-crystallin, decrease molecular chaperone functions. J. Mol. Biol. 289, 397411.
  • 30
    Smulders, R.H., van Boekel, M.A.M. & de Jong, W.W. (1998) Mutations and modifications support a ‘pitted-flexiball’ model for α-crystallin. Int. J. Biol. Macromol. 22, 187196.
  • 31
    Plater, M.L., Goode, D. & Crabbe, M.J. (1996) Effects of site-directed mutations on the chaperone-like activity of αB-crystallin. J. Biol. Chem. 271, 2855828566.
  • 32
    Merck, K.B., De Haard-Hoekman, W.A., Oude Essink, B.B., Bloemendal, H. & De Jong, W.W. (1992) Expression and aggregation of recombinant αA-crystallin and its two domains. Biochim. Biophys. Acta. 1130, 267276.
  • 33
    Smulders, R.H., Carver, J.A., Lindner, R.A., van Boekel, M.A.M., Bloemendal, H. & de Jong, W.W. (1996) Immobilization of the C-terminal extension of bovine αA-crystallin reduces chaperone-like activity. J. Biol. Chem. 271, 2906029066.
  • 34
    van Montfort, R.L., Basha, E., Friedrich, K.L., Slingsby, C. & Vierling, E. (2001) Crystal structure and assembly of a eukaryotic small heat shock protein. Nat. Struct. Biol. 8, 10251030.
  • 35
    Fernando, P. & Heikkila, J.J. (2000) Functional characterization of Xenopus small heat shock protein, Hsp30C: the carboxyl end is required for stability and chaperone activity. Cell Stress Chaperones 5, 148159.
  • 36
    Kirschner, M., Winkelhaus, S., Thierfelder, J.M. & Nover, L. (2000) Transient expression and heat-stress-induced co-aggregation of endogenous and heterologous small heat-stress proteins in tobacco protoplasts. Plant J. 24, 397411.DOI: 10.1046/j.1365-313X.2000.00887.x
  • 37
    Münchbach, M., Dainese, P., Staudenmann, W., Narberhaus, F. & James, P. (1999) Proteome analysis of heat shock protein expression in Bradyrhizobium japonicum. Eur. J. Biochem. 264, 3948.
  • 38
    Nocker, A., Krstulovic, N.-P., Perret, X. & Narberhaus, F. (2001) ROSE elements occur in disparate rhizobia and are functionally interchangeable between species. Arch. Microbiol. 176, 4451.DOI: 10.1007/s002030100294
  • 39
    Koteiche, H.A. & Mchaourab, H.S. (1999) Folding pattern of the α-crystallin domain in αA-crystallin determined by site-directed spin labeling. J. Mol. Biol. 294, 561577.DOI: 10.1006/jmbi.1999.3242
  • 40
    Kappé, G., Leunissen, J.A.M. & de Jong, W.W. (2002) Evolution and diversity of prokaryotic small heat shock proteins. Prog. Mol. Subcell. Biol. 28, 117.
  • 41
    Narberhaus, F. (2002) α-Crystallin-type heat shock proteins: Socializing minichaperones in the context of a multichaperone network. Microbiol. Mol. Biol. Rev. 66, 6493.
  • 42
    van de Klundert, F., Smulders, R.H., Gijsen, M.L.J., Lindner, R.A., Jaenicke, R., Carver, J.A. & de Jong, W.W. (1998) The mammalian small heat-shock protein Hsp20 forms dimers and is a poor chaperone. Eur. J. Biochem. 258, 10141021.
  • 43
    Feil, I.K., Malfois, M., Hendle, J., van der Zandt, H. & Svergun, D.I. (2001) A novel quaternary structure of the dimeric α-crystallin domain with chaperone-like activity. J. Biol. Chem. 276, 1202412029.
  • 44
    Haslbeck, M., Walke, S., Stromer, T., Ehrnsperger, M., White, H.E., Chen, S., Saibil, H.R. & Buchner, J. (1999) Hsp26: a temperature-regulated chaperone. EMBO J. 18, 67446751.
  • 45
    Berengian, A.R., Parfenova, M. & Mchaourab, H.S. (1999) Site-directed spin labeling study of subunit interactions in the α-crystallin domain of small heat-shock proteins – comparison of the oligomer symmetry in αA-crystallin, HSP 27, and HSP 16.3. J.Biol. Chem. 274, 63056314.
  • 46
    Helm, K.W., Lee, G.J. & Vierling, E. (1997) Expression and native structure of cytosolic class II small heat-shock proteins. Plant Physiol. 114, 14771485.
  • 47
    Leroux, M.R., Melki, R., Gordon, B., Batelier, G. & Candido, E.P. (1997) Structure-function studies on small heat shock protein oligomeric assembly and interaction with unfolded polypeptides. J. Biol. Chem. 272, 2464624656.
  • 48
    Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 46734680.
  • 49
    Schägger, H. & von Jagow, G. (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368379.