• 1
    Driessen, A.J., Fekkes, P. & van der Wolk, J.P. (1998) The Sec system. Curr. Opin. Microbiol. 1, 216222.
  • 2
    Müller, M., Koch, H.G., Beck, K. & Schäfer, U. (2001) Protein traffic in bacteria: multiple routes from the ribosome to and across the membrane. Prog. Nucleic Acid Res. Mol. Biol. 66, 107157.
  • 3
    de Cock, H., Overeem, W. & Tommassen, J. (1992) Biogenesis of outer-membrane protein PhoE of Escherichia coli. Evidence for multiple SecB-binding sites in the mature portion of the PhoE protein. J. Mol. Biol. 224, 369379.
  • 4
    Knoblauch, N.T., Rudiger, S., Schonfeld, H.J., Driessen, A.J., Schneider-Mergener, J. & Bukau, B. (1999) Substrate specificity of the SecB chaperone. J. Biol. Chem. 274, 3421934225.
  • 5
    Manting, E.H., van der Does, C. & Driessen, A.J. (1997) In vivo cross-linking of the SecA and SecY subunits of the Escherichia coli preprotein translocase. J. Bacteriol. 179, 56995704.
  • 6
    van der Does, C., Manting, E.H., Kaufmann, A., Lutz, M. & Driessen, A.J. (1998) Interaction between SecA and SecYEG in micellar solution and formation of the membrane-inserted state. Biochemistry 37, 201210.
  • 7
    Fekkes, P., van der Does, C. & Driessen, A.J. (1997) The molecular chaperone SecB is released from the carboxy-terminus of SecA during initiation of precursor protein translocation. EMBO J. 16, 61056113.
  • 8
    Economou, A., Pogliano, J.A., Beckwith, J., Oliver, D.B. & Wickner, W. (1995) SecA membrane cycling at SecYEG is driven by distinct ATP binding and hydrolysis events and is regulated by SecD and SecF. Cell 83, 11711181.
  • 9
    Dalbey, R.E. & Wickner, W. (1985) Leader peptidase catalyzes the release of exported proteins from the outer surface of the Escherichia coli plasma membrane. J. Biol. Chem. 260, 1592515931.
  • 10
    de Gier, J.W., Valent, Q.A., von Heijne, G. & Luirink, J. (1997) The E. coli SRP: preferences of a targeting factor. FEBS Lett. 408, 14.
  • 11
    Herskovits, A.A., Bochkareva, E.S. & Bibi, E. (2000) New prospects in studying the bacterial signal-recognition particle pathway. Mol. Microbiol. 38, 927939.
  • 12
    Valent, Q.A., de Gier, J.W., von Heijne, G., Kendall, D.A., ten Hagen-Jongman, C.M., Oudega, B. & Luirink, J. (1997) Nascent membrane and presecretory proteins synthesized in Escherichia coli associate with signal-recognition particle and trigger factor. Mol. Microbiol. 25, 5364.
  • 13
    Lee, H.C. & Bernstein, H.D. (2001) The targeting pathway of Escherichia coli presecretory and integral-membrane proteins is specified by the hydrophobicity of the targeting signal. Proc. Natl. Acad. Sci. USA 98, 34713476.
  • 14
    Luirink, J., ten Hagen-Jongman, C.M., van der Weijden, C.C., Oudega, B., High, S., Dobberstein, B. & Kusters, R. (1994) An alternative protein-targeting pathway in Escherichia coli: studies on the rol of FtsY. EMBO J. 13, 22892296.
  • 15
    de Leeuw, E., Poland, D., Mol, O., Sinning, I., ten Hagen-Jongman, C.M., Oudega, B. & Luirink, J. (1997) Membrane association of FtsY, the E. coli SRP receptor. FEBS Lett. 416, 225229.
  • 16
    Valent, Q.A., Scotti, P.A., High, S., de Gier, J.W., von Heijne, G., Lentzen, G., Wintermeyer, W., Oudega, B. & Luirink, J. (1998) The Escherichia coli SRP- and SecB-targeting pathways converge at the translocon. EMBO J. 17, 25042512.
  • 17
    Bieker, K.L., Phillips, G.J. & Silhavy, T.J. (1990) The sec and prl genes of Escherichia coli. J. Bioenerg. Biomembr. 22, 291310.
  • 18
    Derman, A.I., Puziss, J.W., Bassford, P.J. Jr & Beckwith, J. (1993) A signal sequence is not required for protein export in prlA mutants of Escherichia coli. EMBO J. 12, 879888.
  • 19
    Flower, A.M., Doebele, R.C. & Silhavy, T.J. (1994) PrlA and PrlG suppressors reduce the requirement for signal sequence recognition. J. Bacteriol. 176, 56075614.
  • 20
    Prinz, W.A., Spiess, C., Ehrmann, M., Schierle, C. & Beckwith, J. (1996) Targeting of signal sequenceless proteins for export in Escherichia coli with altered protein translocase. EMBO J. 15, 52095217.
  • 21
    Nouwen, N., de Kruijff, B. & Tommassen, J. (1996) prlA suppressors in Escherichia coli relieve the proton electrochemical gradient dependency of translocation of wild-type precursors. Proc. Natl. Acad. Sci. USA 93, 59535957.
  • 22
    van der Wolk, J.P., Fekkes, P., Boorsma, A., Hui, J.L., Silhavy, T.J. & Driessen, A.J. (1998) PrlA4 prevents the rejection of signal sequence defective preproteins by stabilizing the SecA–SecY interaction during the initiation of translocation. EMBO J. 17, 36313639.
  • 23
    de Keyzer, J., van der Does, C., Swaving, J. & Driessen, A.J. (2002) The F286Y mutation of PrlA4 tempers the signal sequence suppressor phenotype by reducing the SecA binding affinity. FEBS Lett. 510, 1721.
  • 24
    Duong, F. & Wickner, W. (1999) The PrlA and PrlG phenotypes are caused by a loosened association among the translocase SecYEG subunits. EMBO J. 18, 32633270.
  • 25
    Osborne, R.S. & Silhavy, T.J. (1993) PrlA suppressor mutations cluster in regions corresponding to three distinct topological domains. EMBO J. 12, 33913398.
  • 26
    Schiebel, E., Driessen, A.J., Hartl, F.U. & Wickner, W. (1991) ΔH+ and ATP function at different steps of the catalytic cycle of preprotein translocase. Cell 64, 927939.
  • 27
    Breukink, E., Demel, R.A., de Korte-Kool, G. & de Kruijff, B. (1992) SecA insertion into phospholipids is stimulated by negatively charged lipids and inhibited by ATP: a monolayer study. Biochemistry 31, 11191124.
  • 28
    Manting, E.H. & Driessen, A.J. (2000) Escherichia coli translocase: the unravelling of a molecular machine. Mol. Microbiol. 37, 226238.
  • 29
    Nouwen, N., de Kruijff, B. & Tommassen, J. (1996) ΔH+ dependency of in vitro protein translocation into Escherichia coli inner-membrane vesicles varies with the signal sequence core region composition. Mol. Microbiol. 19, 12051214.
  • 30
    van Dalen, A., Killian, A. & de Kruijff, B. (1999) ΔΨ stimulates membrane translocation of the C-terminal part of a signal sequence. J. Biol. Chem. 274, 1991319918.
  • 31
    de Cock, H. & Tommassen, J. (1992) SecB-binding does not maintain the translocation-competent state of prePhoE. Mol. Microbiol. 6, 599604.
  • 32
    Adams, H., Scotti, P.A., de Cock, H., Luirink, J. & Tommassen, J. (2002) The presence of a helix-breaker in the hydrophobic core of signal sequences of secretory proteins prevents recognition by the signal-recognition particle in Escherichia coli. Eur. J. Biochem., 269,55645571.
  • 33
    Bosch, D., Leunissen, J., Verbakel, J., de Jong, M., van Erp, H. & Tommassen, J. (1986) Periplasmic accumulation of truncated forms of outer-membrane PhoE protein of Escherichia coli K-12. J. Mol. Biol. 189, 449455.
  • 34
    Lugtenberg, B., Peters, R., Bernheimer, H. & Berendsen, W. (1976) Influence of cultural conditions and mutations on the composition of the outer membrane proteins of Escherichia coli. Mol. Gen. Genet. 147, 251262.
  • 35
    Bosch, D., de Boer, P., Bitter, W. & Tommassen, J. (1989) The role of the positively charged N-terminus of the signal sequence of E. coli outer-membrane protein PhoE in export. Biochim. Biophys. Acta 979, 6976.
  • 36
    Lugtenberg, B., Meijers, J., Peters, R., van der Hoek, P. & van Alphen, L. (1975) Electrophoretic resolution of the ‘major outer membrane protein’ of Escherichia coli K-12 into four bands. FEBS Lett. 58, 254258.
  • 37
    de Vrije, T., Tommassen, J. & de Kruijff, B. (1987) Optimal posttranslational translocation of the precursor of PhoE protein across Escherichia coli membrane vesicles requires both ATP and the proton-motive force. Biochim. Biophys. Acta 900, 6372.
  • 38
    High, S., Flint, N. & Dobberstein, B. (1991) Requirements for the membrane insertion of signal-anchor type proteins. J. Cell Biol. 113, 2534.
  • 39
    Luirink, J., High, S., Wood, H., Giner, A., Tollervey, D. & Dobberstein, B. (1992) Signal-sequence recognition by an Escherichia coli ribonucleoprotein complex. Nature (London) 359, 741743.
  • 40
    de Gier, J.W., Mansournia, P., Valent, Q.A., Phillips, G.J., Luirink, J. & von Heijne, G. (1996) Assembly of a cytoplasmic membrane protein in Escherichia coli is dependent on the signal-recognition particle. FEBS Lett. 399, 307309.
  • 41
    de Cock, H. & Tommassen, J. (1991) Conservation of components of the Escherichia coli export machinery in prokaryotes. FEMS Microbiol. Lett. 64, 195199.
  • 42
    Scotti, P.A., Valent, Q.A., Manting, E.H., Urbanus, M.L., Driessen, A.J., Oudega, B. & Luirink, J. (1999) SecA is not required for signal-recognition particle-mediated targeting and initial membrane insertion of a nascent inner membrane protein. J. Biol. Chem. 274, 2988329888.
  • 43
    Carson, M.J., Barondess, J. & Beckwith, J. (1991) The FtsQ protein of Escherichia coli: membrane topology, abundance, and cell division phenotypes due to overproduction and insertion mutations. J. Bacteriol. 173, 21872195.
  • 44
    Newitt, J.A. & Bernstein, H.D. (1998) A mutation in the Escherichia coli secY gene that produces distinct effects on inner-membrane protein insertion and protein export. J. Biol. Chem. 273, 1245112456.
  • 45
    Shinde, U.P., Guru Row, T.N. & Mawal, Y.R. (1989) Export of proteins across membranes: the helix reversion hypothesis. Biosci. Rep. 9, 737745.
  • 46
    Iino, T. & Sako, T. (1988) Inhibition and resumption of processing of the staphylokinase in some Escherichia coli prlA suppressor mutants. J. Biol. Chem. 263, 1907719082.
  • 47
    Müller, J., Reinert, H. & Malke, H. (1989) Streptokinase mutations relieving Escherichia coli K-12 (prlA4) of detriments caused by the wild-type skc gene. J. Bacteriol. 171, 22022208.
  • 48
    Sako, T. & Iino, T. (1988) Distinct mutation sites in prlA suppressor mutant strains of Escherichia coli respond either to suppression of signal peptide mutations or to blockage of staphylokinase processing. J. Bacteriol. 170, 53895391.
  • 49
    Emr, S.D., Hanley-Way, S. & Silhavy, T.J. (1981) Suppressor mutations that restore export of a protein with a defective signal sequence. Cell 23, 7988.
  • 50
    Sako, T. (1991) Novel prlA alleles defective in supporting staphylokinase processing in Escherichia coli. J. Bacteriol. 173, 22892296.
  • 51
    Urbanus, M.L., Scotti, P.A., Froderberg, L., Saaf, A., de Gier, J.W., Brunner, J., Samuelson, J.C., Dalbey, R.E., Oudega, B. & Luirink, J. (2001) Sec-dependent membrane protein insertion: sequential interaction of nascent FtsQ with SecY and YidC. EMBO Report 2, 524529.
  • 52
    van der Laan, M., Houben, E.N., Nouwen, N., Luirink, J. & Driessen, A.J. (2001) Reconstitution of Sec-dependent membrane protein insertion: nascent FtsQ interacts with YidC in a SecYEG-dependent manner. EMBO Report 2, 519523.
  • 53
    Manting, E.H., van der Does, C., Remigy, H., Engel, A. & Driessen, A.J. (2000) SecYEG assembles into a tetramer to form the active protein translocation channel. EMBO J. 19, 852861.
  • 54
    Bessonneau, P., Besson, V., Collinson, I. & Duong, F. (2002) The SecYEG preprotein translocation channel is a conformationally dynamic and dimeric structure. EMBO J. 21, 9951003.
  • 55
    Duong, F. & Wickner, W. (1998) Sec-dependent membrane protein biogenesis: SecYEG, preprotein hydrophobicity and translocation kinetics control the stop-transfer function. EMBO J. 17, 696705.
  • 56
    Nilsson, I., Whitley, P. & von Heijne, G. (1994) The COOH-terminal ends of internal signal and signal-anchor sequences are positioned differently in the ER translocase. J. Cell Biol. 126, 11271132.
  • 57
    Tommassen, J., van Tol, H. & Lugtenberg, B. (1983) The ultimate localization of an outer membrane protein of Escherichia coli K-12 is not determined by the signal sequence. EMBO J. 2, 12751279.
  • 58
    Casadaban, M.J. (1976) Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage λ and µ. J. Mol. Biol. 104, 541555.
  • 59
    Nichols, B.P., Shafiq, O. & Meiners, V. (1998) Sequence analysis of Tn10 insertion sites in a collection of Escherichia coli strains used for genetic mapping and strain construction. J. Bacteriol. 180, 64086411.
  • 60
    Flower, A.M., Osborne, R.S. & Silhavy, T.J. (1995) The allele-specific synthetic lethality of prlA-prlG double mutants predicts interactive domains of SecY and SecE. EMBO J. 14, 884893.
  • 61
    Nouwen, N., Tommassen, J. & de Kruijff, B. (1994) Requirement for conformational flexibility in the signal sequence of precursor protein. J. Biol. Chem. 269, 1602916033.