SEARCH

SEARCH BY CITATION

References

  • 1
    Lengeler, J.W., Drews, G. & Schlegel, H.G. (1999) Biology of the Prokaryotes, Georg. Thieme Verlag, Stuttgart.
  • 2
    Mörsdorf, G., Frunzke, K., Gadkari, D. & Meyer, O. (1992) Microbial growth on carbon monoxide. Biodegradation 3, 6182.
  • 3
    Dobbek, H., Gremer, L., Meyer, O. & Huber, R. (1999) Crystal structure and mechanism of CO dehydrogenase, a molybdo iron-sulfur flavoprotein containing S-selanylcysteine. Proc. Natl Acad. Sci. USA 96, 88848889.
  • 4
    Kerby, R.L., Ludden, P.W. & Roberts, G.P. (1995) Carbon monoxide-dependent growth of Rhodospirillum rubrum. J. Bacteriol. 177, 22412244.
  • 5
    Uffen, R.L. (1976) Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate. Proc. Natl Acad. Sci. USA 73, 32983302.
  • 6
    Uffen, R.L. (1983) Metabolism of carbon monoxide by Rhodopseudomonas gelatinosa: cell growth and properties of the oxidation system. J. Bacteriol. 155, 956965.
  • 7
    Svetlichnyi, V.A., Sokolova, T.G., Gerhardt, M., Ringpfeil, M., Kostrikina, N.A. & Zavarzin, G.A. (1991) Carboxydothermus hydrogenoformans General nov., sp. nov., a CO-utilizing thermophilic anaerobic bacterium from hypothermal environments of Kunashir island. System. Appl. Microbiol. 14, 254260.
  • 8
    Svetlichnyi, V.A., Sokolova, T.G., Gerhardt, M., Kostrikina, N.A. & Zavarzin, G.A. (1991) Anaerobic extremely thermophilic carboxydotrophic bacteria in hydrotherms of Kuril islands. Microbial Ecol. 21, 110.
  • 9
    Shelver, D., Kerby, R.L., He, Y. & Roberts, G.P. (1997) CooA, a CO-sensing transcription factor from Rhodospirillum rubrum, is a CO-binding heme protein. Proc. Natl Acad. Sci. USA 94, 1121611220.
  • 10
    Kerby, R.L., Hong, S.S., Ensign, S.A., Coppoc, L.J., Ludden, P.W. & Roberts, G.P. (1992) Genetic and physiological characterization of the Rhodospirillum rubrum carbon monoxide dehydrogenase system. J. Bacteriol. 174, 52845294.
  • 11
    Kerby, R.L., Ludden, P.W. & Roberts, G.P. (1997) In vivo nickel insertion into the carbon monoxide dehydrogenase of Rhodospirillum rubrum: molecular and physiological characterization of CooCTJ. J. Bacteriol. 179, 22592266.
  • 12
    Bonam, D. & Ludden, P.W. (1987) Purification and characterization of carbon monoxide dehydrogenase, a nickel, zinc, iron–sulfur protein, from Rhodospirillum rubrum. J. Biol. Chem. 262, 29802987.
  • 13
    Drennan, C.L., Heo, J., Sintchak, M.D., Schreiter, E. & Ludden, P.W. (2001) Life on carbon monoxide: X-ray structure of Rhodospirillum rubrum Ni–Fe–S carbon monoxide dehydrogenase. Proc. Natl Acad. Sci. USA 98, 1197311978.
  • 14
    Ensign, S.A. & Ludden, P.W. (1991) Characterization of the CO oxidation/H2 evolution system of Rhodospirillum rubrum. Role of a 22-kDa iron–sulfur protein in mediating electron transfer between carbon monoxide dehydrogenase and hydrogenase. J. Biol. Chem. 266, 1839518403.
  • 15
    Fox, J.D., Kerby, R.L., Roberts, G.P. & Ludden, P.W. (1996a) Characterization of the CO-induced, CO-tolerant hydrogenase from Rhodospirillum rubrum and the gene encoding the large subunit of the enzyme. J. Bacteriol. 178, 15151524.
  • 16
    Fox, J.D., He, Y., Shelver, D., Roberts, G.P. & Ludden, P.W. (1996b) Characterization of the region encoding the CO-induced hydrogenase of Rhodospirillum rubrum. J. Bacteriol. 178, 62006208.
  • 17
    Künkel, A., Vorholt, J.A., Thauer, R.K. & Hedderich, R. (1998) An Escherichia coli hydrogenase-3-type hydrogenase in methanogenic archaea. Eur. J. Biochem. 252, 467476.
  • 18
    Meuer, J., Bartoschek, S., Koch, J., Künkel, A. & Hedderich, R. (1999) Purification and catalytic properties of Ech hydrogenase from Methanosarcina barkeri. Eur. J. Biochem. 265, 325335.
  • 19
    Böhm, R., Sauter, M. & Böck, A. (1990) Nucleotide sequence and expression of an operon in Escherichia coli coding for formate hydrogenlyase components. Mol. Microbiol. 4, 231243.
  • 20
    Sauter, M., Böhm, R. & Böck, A. (1992) Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli. Mol. Microbiol. 6, 15231532.
  • 21
    Friedrich, T. & Scheide, D. (2000) The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane-bound multisubunit hydrogenases. FEBS Lett. 479, 15.
  • 22
    Tersteegen, A. & Hedderich, R. (1999) Methanobacterium thermoautotrophicum encodes two multi-subunit membrane-bound [NiFe] hydrogenases. Transcription of the operons and sequence analysis of the deduced proteins. Eur. J. Biochem. 264, 930943.
  • 23
    Silva, P.J., van den Ban, E.C., Wassink, H., Haaker, H., de Castro, B., Robb, F.T. & Hagen, W.R. (2000) Enzymes of hydrogen metabolism in Pyrococcus furiosus. Eur. J. Biochem. 267, 65416551.
  • 24
    Meuer, J., Kuettner, H.C., Zhang, J.K., Hedderich, R. & Metcalf, W.W. (2002) Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation. Proc. Natl Acad. Sci. USA 99, 56325637.
  • 25
    Svetlitchnyi, V., Peschel, C., Acker, G. & Meyer, O. (2001) Two membrane-associated NiFeS-carbon monoxide dehydrogenases from the anaerobic carbon-monoxide-utilizing eubacterium Carboxydothermus hydrogenoformans. J. Bacteriol. 183, 51345144.
  • 26
    Dobbek, H., Svetlitchnyi, V., Gremer, L., Huber, R. & Meyer, O. (2001) Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni−4Fe−5S] cluster. Science. 293, 12811285.
  • 27
    Fish, W.W. (1988) Rapid colorimetric micromethod for the quantitation of complexed iron in biological samples. Methods in Enzymology (Riordan, J.F. & Vallee, B.L., eds), pp. 357364. Academic Press Inc, New York.
  • 28
    Cline, J.D. (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr. 14, 454458.
  • 29
    Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248254.
  • 30
    Ferro, M., Seigneurin-Berny, D., Rolland, N., Chapel, A., Salvi, D., Garin, J. & Joyard, J. (2000) Organic solvent extraction as a versatile procedure to identify hydrophobic chloroplast membrane proteins. Electrophoresis. 21, 35173526.
  • 31
    van Montfort, B.A., Canas, B., Duurkens, R., Godovac-Zimmermann, J. & Robillard, G.T. (2002) Improved in-gel approaches to generate peptide maps of integral membrane proteins with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Mass Spectrom. 37, 322330.
  • 32
    Schägger, H. (1994) Denaturing electrophoretic techniques. A Practical Guide to Membrane Protein Purification (G.V.J. H. & S., eds), pp. 5979. Academic Press, San Diego.
  • 33
    Hube, M. Blokesch, M. & Böck, A. (2002) Network of hydrogenase maturation in Escherichia coli: role of accessory proteins HypA and HybF. J. Bacteriol. 184, 38793885.
  • 34
    Heo, J. Halbleib, C.M. & Ludden, P.W. (2001) Redox-dependent activation of CO dehydrogenase from Rhodospirillum rubrum. Proc. Natl Acad. Sci. USA 98, 76907693.
  • 35
    Goubeaud, M. Schreiner, G. & Thauer, R.K. (1997) Purified methyl-coenzyme M reductase is activated when the enzyme-bound coenzyme F430 is reduced to the nickel (I) oxidation state by titanium (III) citrate. Eur. J. Biochem. 243, 110114.
  • 36
    Ensign, S.A. Hyman, M.R. & Ludden, P.W. (1989) Nickel-specific, slow-binding inhibition of carbon monoxide dehydrogenase from Rhodospirillum rubrum by cyanide. Biochemistry. 28, 49734979.
  • 37
    Fauque, G. Peck, H.D.J. Moura, J.J.G. Huynh, B.H. Berlier, Y. DerVartanian, D.V. Teixeira, M. Przybyla, A.E. Moura, I. & LeGall, J. (1988) The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio. FEMS Microbiol. Rev. 54, 299344.
  • 38
    Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680685.