Properties of purified gut trypsin from Helicoverpa zea, adapted to proteinase inhibitors


M. J. Beekwilder, Plant Research International, Postbus 16, 6700 AA Wageningen, the Netherlands. Fax: + 31 317 418094, Tel.: + 31 317 477164, E-mail:


Pest insects such as Helicoverpa spp. frequently feed on plants expressing protease inhibitors. Apparently, their digestive system can adapt to the presence of protease inhibitors. To study this, a trypsin enzyme was purified from the gut of insects that were raised on an inhibitor-containing diet. The amino-acid sequence of this enzyme was analysed by tandem MS, which allowed assignment of 66% of the mature protein amino acid sequence. This trypsin, called HzTrypsin-S, corresponded to a known cDNA sequence from Helicoverpa. The amino acid sequence is closely related (76% identical) to that of a trypsin, HzTrypsin-C, which was purified and identified in a similar way from insects raised on a diet without additional inhibitor. The digestive properties of HzTrypsin-S and HzTrypsin-C were compared. Both trypsins appeared to be equally efficient in degrading protein. Four typical plant inhibitors were tested in enzymatic measurements. HzTrypsin-S could not be inhibited by > 1000-fold molar excess of any of these. The same inhibitors inhibited HzTrypsin-C with apparent equilibrium dissociation constants ranging from 1 nm to 30 nm. Thus, HzTrypsin-S seems to allow the insect to overcome different defensive proteinase inhibitors in plants.