SEARCH

SEARCH BY CITATION

References

  • 1
    Weckwerth, W. & Fiehn, O. (2002) Can we discover novel pathways using metabolomic analysis? Curr. Opin. Biotechnol. 13, 156160.
  • 2
    Wiechert, W. (2001) 13C metabolic flux analysis. Metab. Eng. 3, 195206.
  • 3
    Szyperski, T. (1998) 13C-NMR, MS and metabolic flux balancing in biotechnology research. Q. Rev. Biophys. 31, 41106.
  • 4
    Christensen, B. & Nielsen, J. (1999) Metabolic network analysis. Adv. Biochem. Eng. Biotechnol. 66, 209231.
  • 5
    Varma, A. & Palsson, B.O. (1994) Metabolic flux balancing: basic concepts, scientific, and practical use. Bio/Technol. 12, 994998.
  • 6
    Oliver, S.G., Winson, M.K., Kell, D.B. & Baganz, F. (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol. 16, 373378.
  • 7
    Sauer, U., Lasko, D.R., Fiaux, J., Hochuli, M., Glaser, R., Szyperski, T., Wüthrich, K. & Bailey, J.E. (1999) Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central carbon metabolism. J. Bacteriol. 181, 66796688.
  • 8
    Wittmann, C. (2002) Metabolic flux analysis using mass spectrometry. Adv. Biochem. Eng. Biotechnol. 74, 3964.
  • 9
    Dauner, M., Bailey, J.E. & Sauer, U. (2001) Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis. Biotechnol. Bioeng. 76, 144156.
  • 10
    Petersen, S., de Graaf, A.A., Eggeling, L., Möllney, M., Wiechert, W. & Sahm, H. (2000) In vivo quantification of parallel and bidirectional fluxes in the anaplerosis of Corynebacterium glutamicum. J. Biol. Chem. 275, 3593235941.
  • 11
    Kelleher, J.K. (2001) Flux estimation using isotopic tracers: common ground for metabolic physiology and metabolic engineering. Metab. Eng. 3, 100110.
  • 12
    Bacher, A., Rieder, C., Eichinger, D., Arigoni, D., Fuchs, G. & Eisenreich, W. (1999) Elucidation of novel biosynthetic pathways and metabolic flux patterns by retrobiosynthetic NMR analysis. FEMS Microbiol. Rev. 22, 567598.
  • 13
    Wittmann, C. & Heinzle, E. (2001) Application of MALDI-TOF MS to lysine-producing Corynebacterium glutamicum: a novel approach for metabolic flux analysis. Eur. J. Biochem. 268, 24412455.
  • 14
    Sauer, U., Hatzimanikatis, V., Bailey, J.E., Hochuli, M., Szyperski, T. & Wüthrich, K. (1997) Metabolic fluxes in riboflavin-producing Bacillus subtilis. Nat. Biotechnol. 15, 448452.
  • 15
    Walsh, K. & Koshland, D.E. Jr (1984) Determination of flux through the branch point of two metabolic cycles. The tricarboxylic acid cycle and the glyoxylate shunt. J. Biol. Chem. 259, 96469654.
  • 16
    Szyperski, T. (1995) Biosynthetically directed fractional 13C-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism. Eur. J. Biochem. 232, 433448.
    Direct Link:
  • 17
    Szyperski, T., Glaser, R.W., Hochuli, M., Fiaux, J., Sauer, U., Bailey, J.E. & Wüthrich, K. (1999) Bioreaction network topology and metabolic flux ratio analysis by biosynthetic fractional 13C labeling and two-dimensional NMR spectroscopy. Metab. Eng. 1, 189197.
  • 18
    Emmerling, M., Dauner, M., Ponti, A., Fiaux, J., Hochuli, M., Szyperski, T., Wüthrich, K., Bailey, J.E. & Sauer, U. (2002) Metabolic flux responses to pyruvate kinase knockout in Escherichia coli. J. Bacteriol. 184, 152164.
  • 19
    Christensen, B., Christiansen, T., Gombert, A.K., Thykaer, J. & Nielsen, J. (2001) Simple and robust method for estimation of the split between the oxidative pentose phosphate pathway and the Embden-Meyerhof-Parnas pathway in microorganisms. Biotechnol. Bioeng. 74, 517523.
  • 20
    Dauner, M. & Sauer, U. (2000) GC-MS analysis of amino acids rapidly provides rich information for isotopomer balancing. Biotechnol. Prog. 16, 642649.
  • 21
    Peekhaus, N. & Conway, T. (1998) What's for dinner?: Entner–Doudoroff metabolism in Escherichia coli. J. Bacteriol. 180, 34953502.
  • 22
    Fraser, J. & Newman, E.B. (1975) Derivation of glycine from threonine in Escherichia coli K-12 mutants. J. Bacteriol. 122, 810817.
  • 23
    van Winden, W.A., Wittmann, C., Heinzle, E. & Heijnen, J.J. (2002) Correcting mass isotopomer distributions for naturally occurring isotopes. Biotechnol. Bioeng. 80, 477479.
  • 24
    Fraenkel, D.G. (1996) Glycolysis. In Escherichia Coli and Salmonella: Cellular and Molecular Biology (Neidhardt, F.C., Curtiss, R.III, Ingraham, J.L., Lin, E.C.C., Low, K.B., Magasanik, B., Reznikoff, W.S., Riley, M., Schaechter, M. & Umbarger, H.E., eds), pp. 189198. American Society For Microbiology, Washington DC.
  • 25
    Liu, J.Q., Dairi, T., Itoh, N., Kataoka, M., Shimizu, S. & Yamada, H. (1998) Gene cloning, biochemical characterization and physiological role of a thermostable low-specificity 1-threonine aldolase from Escherichia coli. Eur. J. Biochem. 255, 220226.
  • 26
    Schmidt, K., Nielsen, J. & Villadsen, J. (1999) Quantitative analysis of metabolic fluxes in Escherichia coli, using two-dimensional NMR spectroscopy and complete isotopomer models. J. Biotechnol. 71, 175189.
  • 27
    Fraenkel, D.G. (1986) Mutants in glucose metabolism. Annu. Rev. Biochem. 55, 317337.
  • 28
    Morrissey, A.T. & Fraenkel, D.G. (1972) Suppressor of phosphofructokinase mutations of Escherichia coli. J. Bacteriol. 112, 183187.
  • 29
    LeMaster, D. & Kushlan, D. (1996) Dynamical mapping of E. coli thioredoxin via 13C NMR relaxation analysis. J. Am. Chem. Soc. 118, 92559264.
  • 30
    Guest, J.R. & Roberts, R.E. (1983) Cloning, mapping, and expression of the fumarase gene of Escherichia coli K-12. J. Bacteriol. 153, 588596.
  • 31
    Model, P. & Rittenberg, D. (1967) Measurement of the activity of the hexose monophosphate pathway of glucose metabolism with the use of [18O]glucose. Variations in its activity in Escherichia coli with growth conditions. Biochemistry 6, 6980.
  • 32
    Neese, R.A., Schwarz, J.M., Faix, D., Turner, S., Letscher, A., Vu, D. & Hellerstein, M.K. (1995) Gluconeogenesis and intrahepatic triose phosphate flux in response to fasting or substrate loads. Application of the mass isotopomer distribution analysis technique with testing of assumptions and potential problems. J. Biol. Chem. 270, 1445214466.
  • 33
    Katz, J. & Rognstad, R. (1967) The labeling of pentose phosphate from glucose-14C and estimation of the rates of transaldolase, transketolase, the contribution of the pentose cycle, and ribose phosphate synthesis. Biochemistry 6, 22272247.
  • 34
    Canonaco, F., Hess, T.A., Heri, S., Wang, T., Szyperski, T. & Sauer, U. (2001) Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA. FEMS Microbiol. Lett. 204, 247252.
  • 35
    Dauner, M., Storni, T. & Sauer, U. (2001) Bacillus subtilis metabolism and energetics in carbon-limited and excess-carbon chemostat culture. J. Bacteriol. 183, 73087317.
  • 36
    Wendisch, V.F., de Graaf, A.A., Sahm, H. & Eikmanns, B.J. (2000) Quantitative determination of metabolic fluxes during coutilization of two carbon sources: comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. J. Bacteriol. 182, 30883096.
  • 37
    Bailey, J.E. (1999) Lessons from metabolic engineering for functional genomics and drug discovery. Nat. Biotechnol. 17, 616618.
  • 38
    Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N. & Barabasi, A.L. (2000) The large-scale organization of metabolic networks. Nature 407, 651654.
  • 39
    Hartwell, L. (1997) Theoretical biology. A robust view of biochemical pathways. Nature 387, 855857.
  • 40
    Edwards, J.S. & Palsson, B.O. (2000) Robustness analysis of the Escherichia coli metabolic network. Biotechnol. Prog. 16, 927939.
  • 41
    Edwards, J.S. & Palsson, B.O. (2000) The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc. Natl Acad. Sci. USA 97, 55285533.
  • 42
    Covert, M.W., Schilling, C.H., Famili, I., Edwards, J.S., Goryanin, I.I., Selkov, E. & Palsson, B.O. (2001) Metabolic modeling of microbial strains in silico. Trends Biochem. Sci. 26, 179186.
  • 43
    Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S. & Gilles, E.D. (2002) Metabolic network structure determines key aspects of functionality and regulation. Nature 420, 190193.
  • 44
    Bachmann, B.J. (1996) Derivations and genotypes of some mutant derivatives of Escherichia coli K-12. In Escherichia coli and Salmonella: Cellular and Molecular Biology (Neidhardt, F.C., Curtiss, R.III, Ingraham, J.L., Lin, E.C.C., Low, K.B., Magasanik, B., Reznikoff, W.S., Riley, M., Schaechter, M. & Umbarger, H.E., eds), pp. 24602488. American Society For Microbiology, Washington DC.
  • 45
    Yanisch-Perron, C., Vieira, J. & Messing, J. (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103119.
  • 46
    Fraenkel, D.G. (1968) Selection of Escherichia coli mutants lacking glucose 6-phosphate dehydrogenase or gluconate 6-phosphate dehydrogenase. J. Bacteriol. 95, 12671271.
  • 47
    Böhringer, J., Fischer, D., Mosler, G. & Hengge-Aronis, R. (1995) UDP-glucose is a potential intracellular signal molecule in the control of expression of sigma S and sigma S-dependent genes in Escherichia coli. J. Bacteriol. 177, 413422.
  • 48
    Morrissey, A.T. & Fraenkel, D.G. (1968) Selection of fructose 6-phosphate kinase mutants in Escherichia coli. Biochem. Biophys. Res. Commun. 32, 467473.
  • 49
    Ponce, E., Flores, N., Martinez, A., Valle, F. & Bolivar, F. (1995) Cloning of the two pyruvate kinase isoenzyme structural genes from Escherichia coli: the relative roles of these enzymes in pyruvate biosynthesis. J. Bacteriol. 177, 57195722.
  • 50
    Hansen, E.J. & Juni, E. (1975) Isolation of mutants of Escherichia coli lacking NAD- and NADP-linked malic enzymes. Biochem. Biophys. Res. Commun. 65, 559566.