SEARCH

SEARCH BY CITATION

References

  • 1
    Nicholls, P. & Schonbaum, G.R. (1963) Catalases. In The Enzymes, Vol. VIII, 2nd edn (Boyer, P.D., Lardy, H. & Myrback, K., eds), pp. 147225. Academic Press New York, New York.
  • 2
    Melik-Adamyan, W.R., Barynin, V.V., Vogin, A.A., Borisov, V.V., Vainshtein, B.K., Fita, I., Marthy, M.R.N. & Rossmann, M.G. (1986) Comparison of beef liver and Penicillium vitale catalases. J. Mol. Biol. 188, 6372.
  • 3
    Bravo, J., Mate, M.J., Schneider, T., Switala, J., Wilson, K., Loewen, P.C. & Fita, I. (1999) Structure of catalase HPII from Escherichia coli at 1.9 Å resolution. Proteins 34, 155166.
  • 4
    Zamocky, M. & Koller, F. (1999) Understanding the structure and function of catalases: clues from molecular evolution and mutagenesis. Prog. Biophys. Mol. Biol. 72, 1966.
  • 5
    Barynin, V.V. & Grebenko, A.I. (1986) T-catalase is nonheme catalase of the extremely thermophilic bacterium Thermus thermophilus HB8. Dokl. Akad. Nauk. SSSR 286, 461464.
  • 6
    Allgood, G.S. & Perry, J.J. (1986) Characterization of a manganese-containing catalase from the obligate thermophile Thermoleophilum album. J. Bacteriol. 168, 563567.
  • 7
    Kono, Y. & Fridovich, I. (1983) Isolation and characterization of the pseudocatalase of Lactobacillus plantarum. J. Biol. Chem. 258, 60156019.
  • 8
    Beyer, W.F. & Fridovich, I. (1985) Pseudocatalase from Lactobacillus plantarum: evidence for a homopentameric structure containing two atoms of manganese per subunit. Biochemistry 24, 64606467.
  • 9
    Amo, T., Haruyuki, A. & Imanaka, T. (2002) Unique presence of a manganese catalase in a hyperthermophilic archaeon, Pyrobaculum calidifontis VA1. J. Bacteriol. 184, 33053312.
  • 10
    Antonyuk, S.V., Melik-Adamyan, V.R., Popov, A.N., Lamzin, V.S., Hempstead, P.D., Harrison, P.M., Artymiuk, P.J. & Barynin, V.V. (2000) Three-dimensional structure of the enzyme dimanganese catalase from Thermus thermophilus at 1 Å resolution. Crystallogr. Reports 45, 105116.
  • 11
    Barynin, V.V., Whittaker, M.M., Antonyuk, S.V., Lamzin, V.S., Harrison, P.M., Artymiuk, P.J. & Whittaker, J.W. (2001) Crystal structure of manganese catalase from Lactobacillus plantarum. Structure 9, 725738.
  • 12
    Ferris, T.E., Huang, C.C. & Jarvis, L.E. (1988) The MIDAS display system. J. Mol. Graphics 6, 1327.
  • 13
    Farrugia, L.J. (1997) Ortep-3 for Windows. J. Appl. Cryst. 30, 565.
  • 14
    Kurtz, D.M. Jr (1997) Structural similarity and functional diversity in diironoxo proteins. J. Biol. Inorg. Chem. 2, 159167.
  • 15
    Nordlund, P. & Eklund, H. (1993) Structure and function of the Escherichia coli ribonucleotide reductase protein R2. J. Mol. Biol. 232, 123164.
  • 16
    Gilchrist, M.L. Jr, Ball, J.A., Randall, D.W. & Britt, R.D. (1995) Proximity of the manganese cluster of photosystem II to the redox-active tyrosine YZ. Proc. Natl Acad. Sci. USA 92, 95459549.
  • 17
    Tommos, C., Hoganson, C.W., Valentin, M.D., Lydakis-Simantiris, N., Dorlet, P., Westphal, K., Chu, H.A., McCracken, J. & Babcock, G.T. (1998) Manganese and tyrosyl radical function in photosynthetic oxygen evolution. Curr. Opin. Chem. Biol. 2, 244252.
  • 18
    Ivanovich, A., Jouve, H.M., Sartor, B. & Gaillard, J. (1997) EPR investigation of compound I in Proteus mirabilis and bovine liver catalases: formation of porphyrin and tyrosyl radical intermediates. Biochemistry 36, 93569364.
  • 19
    Igarashi, T., Kono, Y. & Tanaka, K. (1996) Molecular cloning of manganese catalase from Lactobacillus plantarum. J. Biol. Chem. 271, 2952129524.
  • 20
    Biswas, I., Gruss, A., Ehrlich, S.D. & Maguin, E. (1993) High-efficiency gene inactivation and replacement system for gram-positive bacteria. J. Bacteriol. 175, 36283635.
  • 21
    Maguin, E., Prévost, H., Ehrlich, D. & Gruss, A. (1996) Efficient insertional mutagenesis in lactococci and other gram-positive bacteria. J. Bacteriol. 178, 931935.
  • 22
    Aukrust, T.W., Brurberg, M.B. & Nes, I.F. (1995) Transformation of Lactobacillus by electroporation. Methods Mol. Biol. 47, 201208.
  • 23
    Kahala, M. & Palva, A. (1999) The expression signals of the Lactobacillus brevis slpA gene direct efficient heterologous protein production in lactic acid bacteria. Appl. Microbiol. Biotechnol. 51, 7178.
  • 24
    Kahala, M., Savijoki, K. & Palva, A. (1997) In vivo expression of the Lactobacillus brevis S-layer gene. J. Bacteriol. 179, 284286.
  • 25
    Savijoki, K., Kahala, M. & Palva, A. (1997) High level heterologous protein production in Lactococcus and Lactobacillus using a new secretion system based on the Lactobacillus brevis S-layer signals. Gene 186, 255262.
  • 26
    Meier, A., Whittaker, M.M. & Whittaker, J.W. (1996) EPR polarization studies on Mn catalase from Lactobacillus plantarum. Biochemistry 35, 348360.
  • 27
    Whittaker, M.M., Barynin, V.V., Antonyuk, S.V. & Whittaker, J.W. (1999) The oxidized (3,3) state of manganese catalase. Comparison of enzymes from Thermus thermophilus and Lactobacillus plantarum. Biochemistry 38, 91269136.
  • 28
    Whittaker, J.W. & Whittaker, M.M. (1991) Active site spectral studies on manganese superoxide dismutase. J. Am. Chem. Soc. 113, 55285540.
  • 29
    Otwinowski, Z. & Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307315.
  • 30
    Collaborative Computational Project, Number 4. (1994) The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. D50, 760763.
  • 31
    Murshudov, G.N., Vagin, A.A. & Dodson, E.T. (1997) Refinement of Macromolecular Structures by the Maximum-Likelihood Method. Acta Crystallogr. D53, 240255.
  • 32
    Lamzin, V.S. & Wilson, K.S. (1993) Automated Refinement of Protein Models. Acta Crystallogr. D49, 129147.
  • 33
    Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. (1991) Improved methods for building protein models in electron density maps and the location of errors in those models. Acta Crystallogr. A47, 110119.
  • 34
    Murshudov, G.N., Vagin, A.A., Lebedev, A., Wilson, K.S. & Dodson, E.J. (1999) Efficient anisotropic refinement of macromolecular structures using FFT. Acta Cryst. D55, 247255.
  • 35
    Brunger, A.T. (1992) The Free R. value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472474.
  • 36
    Stout, G.H. & Jensen, L.H. (1989) X-ray structure determination, a practical guide. 2nd Edn. Wiley, New York, USA.
  • 37
    Kraulis, P.J. (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 24, 946950.
  • 38
    Esnouf, R.M. (1997) An extensively modified version of MOLSCRIPT that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model. 15, 132134.
  • 39
    Nordlund, P. & Eklund, H. (1995) Di-iron-carboxylate proteins. Curr. Opin. Struct. Biol. 5, 758766.
  • 40
    Rozenzweig, A.C., Nordlund, P., Takahara, P.M., Frederick, C.A. & Lippard, S.J. (1995) Geometry of the soluble methane monooxygenase catalytic diiron center in two oxidation states. Chem. Biol. 2, 409418.
  • 41
    Logan, D.T., Su, X.-D., Åberg, A., Regnström, K., Hajdu, J., Eklund, H. & Nordlund, P. (1996) Crystal structure of reduced protein R2 of ribonucleotide reductase: the structural basis for oxygen activation at a dinuclear iron site. Structure 4, 10531064.
  • 42
    Elango, N., Radhakrishnan, R., Froland, W.H., Wallar, B.J., Earhart, C.A., Lipscomb, J.D. & Ohlendorf, D.H. (1997) Crystal structure of the hydroxylase component of methane monooxygenase from Methylosinus trichosporium OB3b. Protein Sci. 6, 556568.
  • 43
    Larsson, Å. & Sjöberg, B.-M. (1986) Identification of the stable free radical tyrosine residue in ribonucleotide reductase. EMBO J. 5, 20372040.
  • 44
    Debus, R.J., Barry, B.A., Stihole, I., Babcock, G.T. & McIntosh, L. (1988) Site-directed mutagenesis identifies a tyrosine radical involved in the photosynthetic oxygen-evolving system. Biochemistry 27, 90719074.
  • 45
    Tsai, A., His, L.C., Kulmacz, R.J., Palmer, G. & Smith, W.L. (1994) Characterization of the tyrosyl radicals in ovine prostaglandin H synthase-1 by isotope replacement and site-directed mutagenesis. J. Biol. Chem. 269, 50585091.
  • 46
    Chen-Barrett, Y., Harrison, P.M., Treffry, A., Quail, M.A., Arosio, P., Santambrogio, P. & Chasteen, N.D. (1995) Tyrosyl radical formation during the oxidative deposition of iron in human apoferritin. Biochemistry 34, 78477853.
  • 47
    Whittaker, J.W. (1999) Manganese superoxide dismutase. Met. Ions Biol. Syst. 37, 587611.
  • 48
    Lah, M.S., Dixon, M.M., Pattridge, K.A., Stallings, W.C., Fee, J.A. & Ludwig, M.A. (1995) Structure-function in Escherichia coli iron superoxide dismutase: comparisons with the manganese enzyme from Thermus thermophilus. Biochemistry 34, 16461660.
  • 49
    Whittaker, M.M. & Whittaker, J.M. (1997) Mutagenesis of a proton linkage pathway in Escherichia coli manganese superoxide dismutase. Biochemistry 36, 89238931.
  • 50
    Guan, Y., Hickey, M.J., Borgstahl, G.E., Hallewell, R.A., Lepock, J.R., O'Connor, D., Hsieh, Y., Nick, H.S., Silverman, D.N. & Tainer, J.A. (1998) Crystal structure of Y34F mutant human mitochondrial manganese superoxide dismutase and the functional role of tyrosine 34. Biochemistry 37, 47224730.
  • 51
    Brunold, T.C., Gamelin, D.R., Stemmler, T.L., Mandal, S.K., Armstrong, W.H., Penner-Hahn, J.E. & Solomon, E.I. (1998) Spectroscopic Studies of Oxidized Manganese Catalase and µ-Oxo-Bridged Dimanganese (III) Model Complexes: Electronic Structure of the Active Site and Its Relation to Catalysis. J. Am. Chem. Soc. 120, 87248738.
  • 52
    Dismukes, G.C. (1996) Manganese Enzymes with Binuclear Active Sites. Chem. Rev. 96, 29092926.
  • 53
    Yoder, D.W., Hwang, J. & Penner-Hahn, J.E. (1999) Manganese catalases. Met. Ions Biol. Syst. 37, 527557.
  • 54
    Wieghardt, K., Bossek, U., Nuber, B., Weiss, J., Bonvoisin, J., Corbella, M., Vitols, S.E. & Girerd, J.J. (1988) Synthesis, crystal structures, reactivity, and magnetochemistry of a series of binuclear complexes of manganese (II) -(III), and -(IV) of biological relevance. The crystal structure of [L'MnIV(µ-O)3MnIVL′](PF6).2H2O containing an unprecedented short Mn…Mn distance of 2.296 Å. J. Am. Chem. Soc. 110, 73987411.
  • 55
    Vincent, J.B., Tsai, H.-L., Blackman, A.G., Wang, S., Boyd, P.D.W., Folting, K., Huffman, J.C., Lobkovsky, E.B., Hendrickson, D.N. & Christou, G. (1993) Models of the manganese catalase enzymes. Dinuclear manganese (III) complexes with the [Mn2(µ-O)(µ-O2CR)2]2+ core and terminal monodentate ligands: preparation and properties of [Mn2O(O2CR)2X2(bpy)2](X = chloride, azide, water). J. Am. Chem. Soc. 115, 1235312361.
  • 56
    Toftlund, H., Markiewicz, A. & Murray, K.S. (1990) Acta Chemica Scand. 44, 443446.
  • 57
    Thomson, A.J. & Johnson, M.K. (1980) Magnetization curves of haemoproteins measured by low-temperature magnetic-circular-dichroism spectroscopy. Biochem. J. 191, 411420.
  • 58
    Whittaker, J.W. & Soloman, E.I. (1988) Spectroscopic studies on ferrous nonheme iron active sites: magnetic circular dichroism of mononuclear iron sites in superoxide dismutase and lipoxygenase. J. Am. Chem. Soc. 110, 53295339.
  • 59
    Hendrich, M.P. & Debrunner, P.G. (1989) Integer-spin electron paramagnetic resonance of iron proteins. Biophys. J. 56, 489506.
  • 60
    Dismukes, G.C. & Siderer, Y. (1981) Intermediates of a polynuclear manganese center involved in photosynthetic oxidation of water. Proc. Natl Acad. Sci. USA 78, 274278.
  • 61
    Pomes, R. & Roux, B. (1998) Free energy profiles for H+ conduction along hydrogen-bonded chains of water molecules Biophys. J. 75, 3340.