• 1
    Pugsley, A.P. (1993) The complete general secretory pathway in Gram-negative bacteria. Microbiol. Rev. 57, 50108.
  • 2
    Berks, B.C., Sargent, F. & Palmer, T. (2000) The Tat protein export pathway. Mol. Microbiol. 35, 260274.
  • 3
    Müller, M., Koch, H.-G., Beck, K. & Schäfer, U. (2001) Protein traffic in bacteria: multiple routes from the ribosome to and across the membrane. Prog. Nucleic Acid Res. 66, 107157.
  • 4
    Robinson, C. & Bolhuis, A. (2001) Protein targeting by the twin arginine translocation pathway. Nat. Rev. Mol. Cell. Biol. 2, 350356.
  • 5
    Wexler, M., Sargent, F., Jack, R.L., Stanley, N.R., Bogsch, E.G., Robinson, C., Berks, B.C. & Palmer, T. (2000) TatD is a cytoplasmic protein with DNase activity. J. Biol. Chem. 275, 1671716722.
  • 6
    Sargent, F., Bogsch, E.G., Stanley, N.R., Wexler, M., Robinson, C., Berks, B.C. & Palmer, T. (1998) Overlapping functions of components of a bacterial Sec-independent protein export pathway. J. Biol. Chem. 274, 3607336082.
  • 7
    Sargent, F., Gohlke, U., de Leeuw, E., Stanley, N., Palmer, T., Saibil, H.R. & Berks, B.C. (2001) Purified components of the Escherichia coli Tat protein transport system form a double-layered ring structure. Eur. J. Biochem. 268, 33613367.
  • 8
    Bolhuis, A., Mathers, J.E., Thomas, J.D., Barrett, C.M.L. & Robinson, C. (2001) TatB and TatC form a functional and structural unit of the twin-arginine translocase from Escherichia coli. J. Biol. Chem. 276, 2021320219.
  • 9
    Stanley, N.R., Palmer, T. & Berks, B.C. (2000) The twin arginine consensus motif of tat signal peptides is involved in Sec-independent protein targeting in Escherichia coli. J. Biol. Chem. 275, 1159111596.
  • 10
    Hinsley, A.P., Stanley, N.R., Palmer, T. & Berks, B.C. (2001) A naturally occurring bacterial Tat signal peptide lacking one of the ‘invariant’ arginine residues of the consensus targeting motif. FEBS Lett. 497, 4549.
  • 11
    Cristóbal, S., de Gier, J.-W., Nielsen, H. & von Heijne, G. (1999) Compeition between Sec- and Tat-dependent protein translocation in Escherichia coli. EMBO J. 18, 29822990.
  • 12
    Bogsch, E., Brink, S. & Robinson, C. (1997) Pathway specificity for a ΔpH-dependent precursor thylacoid lumen protein is governed by a ‘Sec-avoidance’ motif in the transfer peptide and a ‘Sec-incompatible’ mature protein. EMBO J. 16, 38513859.
  • 13
    Brüser, T., Deutzmann, R. & Dahl, C. (1998) Evidence against the double-arginine motif as the only determinant for protein translocation by a novel Sec-independent pathway in Escherichia coli. FEMS Microbiol. Lett. 164, 329336.
  • 14
    Santini, C.-L., Bernadac, A., Zhang, A., Ize, B., Blanco, C. & Wu, L.-F. (2001) Translocation of jellyfish green fluorescent protein via the Tat system of Escherichia coli and change of its periplasmic localization in response to osmotic up-shock. J. Biol. Chem. 276, 81598164.
  • 15
    Thomas, J.D., Daniel, R.A., Errington, J. & Robinson, C. (2001) Export of active green fluorescent protein to the periplasm by the twin-arginine translocase (Tat) pathway in Escherichia coli. Mol. Microbiol. 39, 4753.
  • 16
    Rodrigue, A., Chanal, A., Beck, K., Müller, M. & Wu, L.-F. (1999) Co-translocation of a periplasmic enzyme complex by a hitchhiker mechanism through the bacterial Tat pathway. J. Biol. Chem. 274, 1322313228.
  • 17
    Mühlenhoff, U. & Lill, R. (2000) Biogenesis of iron-sulfur proteins in eukaryotes: a novel task of mitochondria that is inherited from bacteria. Biochim. Biophys. Acta. 1459, 370382.
  • 18
    Sanders, C., Wethkamp, N. & Lill, H. (2001) Transport of cytochrome c derivatives by the bacterial Tat protein translocation system. Mol. Microbiol. 41, 241246.
  • 19
    Yahr, T.L. & Wickner, W.T. (2001) Functional reconstitution of bacterial Tat translocation in vitro. EMBO J. 20, 18.
  • 20
    Alami, M., Trescher, D., Wu, L.F. & Müller, M. (2002) Separate analysis of twin-arginine translocation (Tat)-specific membrane binding and translocation in Escherichia coli. J. Biol. Chem. 277, 2049920503.
  • 21
    Carter, C.W., Kraut, J., Freer, S.T., Xuong, N.-H., Alden, R.A. & Bartsch, R.G. (1974) Two-Angstrom crystal structure of oxidized Chromatium high potential iron protein. J. Biol. Chem. 249, 42124225.
  • 22
    Banci, L., Bertini, I., Dikiy, A., Kastrau, D.H.W., Luchinat, C. & Sompornpisut, P. (1995) The three-dimensional solution structure of the reduced high-potential iron-sulphur protein from Chromatium vinosum through NMR. Biochemistry 34, 206219.
  • 23
    Brüser, T., Trüper, H.G. & Dahl, C. (1997) Cloning and sequencing of the gene encoding the high potential iron-sulphur protein (HiPIP) from the purple sulphur bacterium Chromatium vinosum. Biochim. Biophys. Acta 1352, 1822.
  • 24
    Natarajan, K. & Cowan, J.A. (1997) Identification of a key intermediate of relevance to iron-sulphur cluster biosynthesis. mechanism of cluster assembly and implications for protein folding. J. Am. Chem. Soc. 119, 40824083.
  • 25
    Bogsch, E.G., Sargent, F., Stanley, N.R., Berks, B.C., Robinson, C. & Palmer, T. (1998) An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria. J. Biol. Chem. 273, 1800318006.
  • 26
    Bolhuis, A., Bogsch, E.G. & Robinson, C. (2000) Subunit interactions in the twin-arginine translocase complex of Escherichia coli. FEBS Lett. 472, 8892.
  • 27
    Landers, J.W. & Zak, B. (1958) Determination of serum copper and iron in a single small sample. Am. J. Clin. Pathol. 29, 590592.
  • 28
    Müller, M. & Blobel, G. (1984) In vitro translocation of bacterial proteins across the plasma membrane of Escherichia coli. Proc. Natl Acad. Sci. USA 81, 74217425.
  • 29
    Watanabe, M. & Blobel, G. (1989) Binding of a soluble factor of Escherichia coli to preproteins does not require ATP and appears to be the first step in protein export. Proc. Natl Acad. Sci. USA 86, 22482252.
  • 30
    Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227, 680685.
  • 31
    Lowry, O.H., Rosenbrough, N.J., Farr, A.L. & Randall, R.J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265275.
  • 32
    Matsudaira, P. (1987) Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J. Biol. Chem. 262, 1003510038.
  • 33
    Bartsch (1971) High potential iron proteins: bacterial. Methods Enzymol. 23, 644649.
  • 34
    Dunham, W.R., Hagen, W.R., Fee, J.A., Sands, R.H., Dunbar, J.B. & Humblet, C. (1991) An investigation of Chromatium vinosum high-potential iron-sulphur protein by EPR and Mossbauer spectroscopy: evidence for a freezing-induced dimerization in NaCl solutions. Biochim. Biophys. Acta 1079, 253262.
  • 35
    Halbig, D., Wiegert, T., Blaudeck, N., Freudl, R. & Sprenger, G.A. (1999) The efficient export of NADP-containing glucose-fructose oxidoreductase to the periplasm of Zymomonas mobilis depends both on an intact twin-arginine motif in the signal peptide and on the generation of a structural export signal induced by cofactor binding. Eur. J. Biochem. 263, 543551.
  • 36
    Agarwal, A., Tan, J., Eren, M., Tevelev, A., Lui, S.M. & Cowan, J.A. (1993) Synthesis, cloning and expression of a synthetic gene for high potential iron protein from Chromatium vinosum. Biochem. Biophys. Res. Commun. 197, 13571362.
  • 37
    Blaudeck, N., Sprenger, G.A., Freudl, R. & Wiegert, T. (2001) Specificity of signal peptide recognition in tat-dependent bacterial protein translocation. J. Bacteriol. 183, 604610.
  • 38
    Bertini, I., Cowan, J.A., Luchinat, C., Natarajan, K. & Piccoli, M. (1997) characterization of a partially unfolded high potential iron protein. Biochemistry 36, 93329339.
  • 39
    Bukau, B., Reilly, P., McCarty, J. & Walker, G.C. (1993) Immunogold localization of the DnaK heat shock protein in Escherichia coli cells. J. Gen. Microbiol. 139, 9599.
  • 40
    Oresnik, I.J., Ladner, C.L. & Turner, R.J. (2001) Identification of a twin-arginine leader-binding protein. Mol. Microbiol. 40, 323331.
  • 41
    de Gier, J.-W. & Luirink, J. (2001) Biogenesis of inner membrane proteins in Escherichia coli. Mol. Microbiol. 40, 314322.
  • 42
    Santini, C.-L., Ize, B., Chanal, A., Müller, M., Giordano, G. & Wu, L.-F. (1998) A novel sec-independent periplasmic protein translocation pathway in Escherichia coli. EMBO J. 17, 101112.
  • 43
    Moore, M., Harrison, S., Peterson, E.C. & Henry, R. (2000) Chloroplast Oxa1p homolog Albino3 is required for post-translational integration of the light harvesting chlorophyll-binding protein into thylakoid membranes. J. Biol. Chem. 275, 15291532.
  • 44
    Sargent, F., Stanley, N.R., Berks, B.C. & Palmer, T. (1999) Sec-independent protein translocation in Escherichia coli: a distinct and pivotal role for the TatB protein. J. Biol. Chem. 274, 3607336082.
  • 45
    Musser, S.M. & Theg, S.M. (2000) Characterization of the early steps of OE17 precursor transport by the thylakoid delta pH/Tat machinery. Eur. J. Biochem. 267, 25882598.