SEARCH

SEARCH BY CITATION

References

  • 1
    Campbell, J.W. & Cronan, J.E.J. (2002) Bacterial fatty acid biosynthesis: Targets for antibacterial drug discovery. Ann. Rev. Microbiol. 55, 305332.
  • 2
    Cronan, J.E. Jr & Waldrop, G.L. (2002) Multi-subunit acetyl-CoA carboxylases. Prog. Lipid Res. 41, 407435.
  • 3
    Samols, D., Thornton, C.G., Murtif, V.L., Kumar, G.K., Haase, F.C. & Wood, H.G. (1988) Evolutionary conservation among biotin enzymes. J. Biol. Chem. 263, 64616464.
  • 4
    Knowles, J. (1989) The mechanism of biotin-dependent enzymes. Annu. Rev. Biochem. 58, 195221.
  • 5
    Perham, R.N. (2000) Swinging arms and swinging domains in multifunctional enzymes: catalytic machines for multistep reactions. Annu. Rev. Biochem. 69, 9611004.
  • 6
    Chapman-Smith, A. & Cronan, J.E. Jr (1999) The enzymatic biotinylation of proteins: a post-translational modification of exceptional specificity. Trends Biochem. Sci. 24, 359363.
  • 7
    Beckett, D. & Matthews, B.W. (1997) Escherichia coli repressor of biotin biosynthesis. Methods Enzymol. 279, 362377.
  • 8
    Cronan, J.E. Jr (1989) The E. coli bio operon: transcriptional repression by an essential protein modification enzyme. Cell 58, 427429.
  • 9
    Wilson, K.P., Shewchuk, L.M., Brennan, R.G., Otsuka, A.J. & Matthews, B.W. (1992) Escherichia coli biotin holoenzyme synthetase/bio repressor crystal structure delineates the biotin- and DNA-binding domains. Proc Natl Acad. Sci. USA 89, 92579261.
  • 10
    Brennan, R.G., Vasu, S., Matthews, B.W. & Otuska, A.J. (1989) Crystallization of the bifunctional biotin operon repressor. J. Biol. Chem. 264, 5.
  • 11
    Kwon, K. & Beckett, D. (2000) Function of a conserved sequence motif in biotin holoenzyme synthetases. Protein Sci. 9, 15301539.
  • 12
    Weaver, L.H., Kwon, K., Becket, D. & Matthews, B.W. (2001) Corepressor-induced organisation and assembly of the biotin repressor: a model for allosteric activation of a transcriptioal regulator. Proc. Natl Acad. Sci. USA 98, 60456050.
  • 13
    Athappilly, F.K. & Hendrickson, W.A. (1995) Structure of the biotinyl domain of acetyl-coenzyme A carboxylase determined by MAD phasing. Structure 3, 14071419.
  • 14
    Yao, X., Wei, D., Soden, C.J., Summers, M.F. & Beckett, D. (1997) Structure of the carboxy-terminal fragment of the apo-biotin carboxyl carrier subunit of Escherichia coli acetyl-CoA carboxylase. Biochemistry 36, 1508915100.
  • 15
    Roberts, E.L., Shu, N., Howard, M.J., Broadhurst, R.W., Chapman-Smith, A., Wallace, J.C., Cronan, J.E. Jr & Perham, R.N. (1999) solution structures of apo and holo biotinyl domains from acetyl coenzyme A carboxylase of Escherichia coli determined by triple-resonance nuclear magnetic resonance spectroscopy. Biochemistry 38, 50455053.
  • 16
    Deckert, G., Warren, P.V., Gaasterland, T., Young, W.G., Lenox, A.L., Graham, D.E., Overbeek, R., Snead, M.A., Keller, M., Aujay, M., Huber, R., Feldman, R.A., Short, J.M., Olsen, G.J. & Swanson, R.V. (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392, 353358.
  • 17
    Hough, D.W. & Danson, M.J. (1999) Extremozymes. Curr. Op. In Chem. Biol. 3, 3946.
  • 18
    Rothschild, L.J. & Mancinelli, R.L. (2001) Life in extreme environments. Nature 409, 10921101.
  • 19
    Mukhopadhyay, B., Purwantini, E., Kreder, C.L. & Wolfe, R.S. (2001) Oxaloacetate synthesis in the methanarchaeon Methanosarcina barkeri: pyruvate carboxylase genes and a putative Escherichia coli-type bifunctional biotin protein ligase gene (bpl/birA) exhibit a unique organization. J. Bacteriol. 183, 38043810.
  • 20
    Sambrook, J., Maniatis, T. & Fritsch, E.F. (1989) Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA.
  • 21
    Sarker, G. & Summer, S.S. (1990) The Megaprimer Method of Site-directed Mutagenesis. Biotechniques 8, 404407.
  • 22
    Chapman-Smith, A., Morris, T.W., Wallace, J.C. & Cronan, J.E. Jr (1999) Molecular recognition in a post-translational modification of exceptional specificity. J. Biol. Chem. 274, 14491457.
  • 23
    Lee, H.J. & Wilson, I.B. (1971) Enzymic parameters: measurement of V and Km. Biochim. Biophys. Acta. 242, 519522.
  • 24
    Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 46734680.
  • 25
    Nenortas, E. & Beckett, D. (1996) Purification and characterisation of intact and truncated forms of Escherichia coli biotin carboxyl carrier subunit of acetyl-CoA carbioxylase. J. Biol. Chem. 271, 75597567.
  • 26
    Stolz, J., Ludwig, A. & Sauer, N. (1998) Bacteriophage lambda surface display of a bacterial biotin acceptor domain reveals the minimal peptide size required for biotinylation. FEBS Letts 440, 213217.
  • 27
    Chapman-Smith, A., Turner, D.L., Cronan, J.E., Jr, Morris, T.W. & Wallace, J.C. (1994) Expression, biotinylation and purification of a biotin-domain peptide from the biotin carboxy protein of Escherichia coli acetyl-CoA carboxylase. Biochem. J. 302, 881887.
  • 28
    Polyak, S.W., Chapman-Smith, A., Brautigan, P.J. & Wallace, J.C. (1999) Biotin protein ligase from Sacchacromyces cerevisiae. J. Biol. Chem. 274, 3284732854.
  • 29
    Chapman-Smith, A., Mulhern, T.D., Whelan, F., Cronan, J.E. Jr & Wallace, J.C. (2001) The C-terminal domain of biotin protein ligase from E. coli is required for catalytic activity. Protein Sci. 10, 26082617.
  • 30
    Tissot, G., Pepin, R., Job, D., Douce, R. & Alban, C. (1998) Purification and properties of the chloroplastic form of biotin holocarboxylase synthetase from Arabidopsis thaliana overexpressed in Escherichia coli. Eur. J. Biochem. 258, 586596.
  • 31
    Murthy, P.N.A. & Mistry, S.P. (1974) In vitro synthesis of propionyl-CoA holocarboxylase by a partially purified mitochondrial preparation from biotin-deficient chicken liver. Can. J. Biochem. 52, 800803.
  • 32
    McIver, L., Leadbeater, C., Campopiano, D.J., Baxter, R.L., Daff, S., Chapman, S.K. & Munro, A.W. (1998) Characterisation of flavodoxin NADP+ oxidoreductase and flavodoxin; key components of electron transfer in Escherichia coli. Eur. J. Biochem. 257, 577585.
  • 33
    Chapman-Smith, A. & Cronan, J.E. Jr (1999) Molecular biology of biotin attachment to proteins. J. Natr. 129, 477S484S.
  • 34
    Reche, P.A., Howard, M.J., Broadhurst, R.W. & Perham, R.N. (2000) Heteronuclear NMR studies of the specificity of the post-translational modification of biotinyl domains by biotinyl protein ligase. FEBS Lett. 479, 9398.
  • 35
    Polyak, S.W., Chapman-Smith, A., Mulhern, T.D., Cronan, J.E. Jr & Wallace, J.C. (2001) Mutational analysis of protein substrate presentation in the post-translational attachment of biotin to biotin domains. J. Biol. Chem. 276, 30373045.
  • 36
    Weaver, L.H., Kwon, K., Beckett, D. & Matthews, B.W. (2001) Competing protein:protein interactions are proposed to control the biological switch of the E. coli biotin repressor. Protein Sci. 10, 26182622.
  • 37
    Cronan, J.E. Jr (2001) The biotinyl domain of Esherichia coli acetyl-CoA carboxlyase. J. Biol. Chem. 276, 3735537364.
  • 38
    Cronan, J.E. Jr (2002) Interchangable enzyme molecules. J. Biol. Chem. 277, 2252022527.
  • 39
    Xu, Y. & Beckett, D. (1996) Evidence for interdomain interaction in the Escherichia coli repressor of biotin biosynthesis from studies of an N-terminal domain deletion mutant. Biochemistry 35, 17831792.
  • 40
    Xu, Y. & Beckett, D. (1997) Biotinyl-5′-adenylate synthesis catalysed by Escherichia coli repressor of biotin biosynthesis. Methods Enzymol. 279, 405421.
  • 41
    Petsko, G.A. (2001) Structural basis of thermostablity in hyperthermophilic proteins, or ‘There's more than one way to skin a cat'. Methods Enzymol. 334, 469478.
  • 42
    Grabarek, Z. & Gergely, J. (1990) Zero-length cross-linking procedure with the use of active esters. Anal. Biochem. 185, 131135.
  • 43
    Solbiati, J., Chapman-Smith, A. & Cronan, J.E. Jr (2002) Stabilization of the biotinoyl domain of Escherichia coli acetyl–CoA carboxylase by interactions between the attached biotin and the protruding ‘thumb’ structure. J. Biol. Chem. 277, 2160421609.