SEARCH

SEARCH BY CITATION

References

  • 1
    Winkler, H.H. (1966) A hexose-phosphate transport system in E. coli. Biochim. Biophys. Acta 117, 231240.
  • 2
    Kadner, R.J., Island, M.D., Dahl, J.L. & Webber, C.A. (1994) A transmembrane signalling complex controls transcription of the Uhp sugar phosphate transport system. Res. Microbiol. 145, 381387.
  • 3
    Island, M.D., Wei, B.Y. & Kadner, J.J. (1992) Structure and function of the uhp genes for the sugar phosphate transport system in E.coli and Salmonella typhimurium. J. Bacteriol. 174, 27542762.
  • 4
    Wright, J.S. III & Kadner, R.J. (2001) The phosphoryl transfer domain of UhpB interacts with the response regulator UhpA. J. Bacteriol. 183, 31493159.
  • 5
    Marger, M.D. & Saier, M.H. (1993) A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biol. Sci. 18, 1320.
  • 6
    Özcan, S., Dover, J., Rosenwald, A.G., Wölfl, S. & Johnston, M. (1996) Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proc. Natl. Acad. Sci. USA 93, 15.
  • 7
    Lalonde, S., Boles, E., Hellmann, H., Barker, L., Patrick, J.W., Frommer, W.B. & Ward, J.M. (1999) The dual fucntion of sugar carriers: transport and sugar sensing. Plant Cell 11, 707726.
  • 8
    Schwöppe, C., Winkler, H.H. & Neuhaus, H.E. (2002) Properties of the glucose 6-phosphate transporter from Chlamydia pneumoniae (HPTcp) and the glucose 6-phosphate sensor from Escherichia coli (UhpC). J. Bacteriol. 184, 21082115.
  • 9
    Stephens, R.S., Kalman, S., Lammel, C., Fan, J., Marathe, R., Aravind, L., Mitchell, W., Olinger, L., Tatusol, R.L., Zhao, Q., Koonin, E.V. & Davis, R.W. (1998) Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282, 754759.
  • 10
    Postma, P.W., Lengeler, J.W. & Jacobson, G.R. (1993) Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol. Rev. 57, 543594.
  • 11
    Härle, C., Kim, I., Angerer , A. & Braun, V. (1995) Signal transfer through three compartments: transcription initiation of the Escherichia coli ferric citrate transport system from the cell surface. EMBO J. 14, 14301438.
  • 12
    Özcan, S., Dover, J. & Johnston, M. (1996) Glucose sensing and signalling by two glucose receptors in the yeast Saccharomyces cerevisiae. EMBO J. 17, 25662573.
  • 13
    Didion, T., Regenberg, B., Jorgensen, M.U., Kielland-Brandt, M.C. & Andersen, H.A. (1998) The permease homologue Ssy1p controls the expression of amino acid and peptide transporter genes in Saccharomyces cerevisiae. Mol. Microbiol. 27, 643650.
  • 14
    Antoine, B., Lefrancois-Martinez, A.-M., Le Guillou, G., Leturgue, A., Vandervalle, A. & Kahn, A. (1997) Role of the GLUT 2 glucose transporter in the response of the 1-type pyruvate kinase gene to glucose in liver-derived cells. J. Biol. Chem. 272, 1793717943.
  • 15
    Barker, L., Kuhn, C., Weise, A., Schulz, A., Gebhardt, C., Hirner, B., Hellmann, H., Schulze, W., Ward, J.M. & Frommer, W.B. (2000) SUT2, a putative sucrose sensor in sieve elements. Plant Cell 12, 11531164.
  • 16
    Bisson, L.F., Neigeborn, L., Carlson, M. & Fraenkel, D.G. (1987) The SNF3 gene is required for high-affinity glucose transport in Saccharomyces cerevisiae. J. Bacteriol. 169, 16561662.
  • 17
    Meyer, S., Melzer, M., Truernit, E., Hummer, C., Besenbeck, R., Stadler, R. & Sauer, N. (2000) AtSUC3, a gene encoding a new Arabidopsis sucrose transporter, is expressed in cells adjacent to the vascular tissue and in a carpel cell layer. Plant J. 24, 869882.
  • 18
    Riordan, J.F. (1979) Arginyl residues and anion binding in proteins. Mol. Cell. Biochem. 26, 7192.
  • 19
    Fann, M., Davies, A.H., Varadhachary, A., Kuroda, T., Sevier, C., Tsuchiya, T. & Maloney, P.C. (1998) Identification of two essential arginine residues in UhpT, the sugar phosphate antiporter of Escherichia coli. J. Memb. Biol. 164, 187195.
  • 20
    Hall, J.A., Fann, M.C. & Maloney, P.C. (1999) Altered substrate selectivity in a mutant of an intrahelical salt bridge in UhpT, the sugar phosphate carrier of Eschericheria coli. J. Biol. Chem. 274, 61486153.
  • 21
    Friedrich, M.J. & Kadner, R.J. (1987) Nucleotide sequence of the uhp region of Escherichia coli. J. Bacteriol. 169, 35563563.
  • 22
    Island, M.D. & Kadner, R.J. (1993) Interplay between the membrane-associated UhpB and UhpC regulatory proteins. J. Bacteriol. 175, 50285034.
  • 23
    Sambrook, J., Fritsch, E.F. & Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, Vol. 3, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA.
  • 24
    Bradford, M.M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248254.
  • 25
    Hall, J.A. & Maloney, P.C. (2001) Transmembrane segment 11 of UhpT, the sugar phosphate carrier of Escherichia coli, is an alpha-helix that carries determinants of substrate selectivity. J. Biol. Chem. 276, 2510725113.
  • 26
    Alexeyev, M.F. & Winkler, H.H. (1999) Membrane topology of the Rickettsia prowazekii ATP/ADP translocase revealed by novel dual pho-lac reporters. J. Mol. Biol. 285, 15031513.
  • 27
    Verhamme, D.T., Postma, P.W., Crieland, W. & Hellingwerf, K.J. (2002) Cooperativity in signal transfer through the Uhp system of Escherichia coli. J. Bacteriol. 184, 42054210.