• 1
    Andrawis, A., Johnson, K.A. & Tien, M. (1988) Studies on compound I formation of the lignin peroxidase from Phanerochaete chrysosporium. J. Biol. Chem. 263, 11951198.
  • 2
    Gold, M.H., Kuwahara, M., Chiu, A.A. & Glenn, J.K. (1984) Purification and characterization of an extracellular H2O2-requiring diarylpropane oxygenase from the white rot basidiomycete, Phanerochaete chrysosporium. Arch. Biochem. Biophys. 234, 353362.DOI: 10.1016/0003-9861(84)90280-7
  • 3
    Cai, D. & Tien, M. (1993) Lignin-degrading peroxidases of Phanerochaete chrysosporium. J. Biotechnol. 30, 7990.
  • 4
    Bogan, B.W. & Lamar, R.T. (1996) Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular lignolytic enzymes. App. Env. Microbiol. 62, 15971603.
  • 5
    Eggert, C., Temp, U., Dean, J.F. & Eriksson, K.E. (1996) A fungal metabolites degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett. 391, 144148.DOI: 10.1016/0014-5793(96)00719-3
  • 6
    Camarero, S., Sarkar, S., Ruiz-Duenas, F.J., Martinez, M.J. & Martinez, A.T. (1999) Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganase peroxidase and lignin peroxidase substrate interaction sites. J. Biol. Chem. 274, 1032410330.
  • 7
    Roy, B.P., Paice, M.G., Archibald, F.S., Misra, S.K. & Misiak, L.E. (1994) Creation of metal-complexing agents, reduction of manganase dioxide, and promotion of manganese peroxidase-mediated Mn (III) production by cellobiose: quinone oxidoreductase from Trametes versicolor. J. Biol. Chem. 269, 1974519750.
  • 8
    Noda, Y., Nishikawa, S., Shinozuka, K., Kadokura, H., Nakajima, H., Yoda, K., Katayama, Y., Morohoshi, N., Haraguchi, T. & Yamasaki, M. (1990) Molecular cloning of the protocatechuate 45-dioxygenase genes of Pseudomonas paucimobilis. J. Bacteriol. 172, 27042709.
  • 9
    Peng, X., Egashira, T., Hanashiro, K., Masai, E., Nishikawa, S., Katayama, Y., Kimbara, K. & Fukuda, M. (1998) Cloning of a Sphingomonas paucimobilis SYK-6 gene encoding a novel oxygenase that cleaves lignin-related biphenyl and characterization of the enzyme. Appl. Environ. Microbiol. 64, 25202527.
  • 10
    Kaufmann, F., Wholfarth, G. & Diekert, G. (1997) Isolation of O-demethylase, an ether-cleaving enzyme system of the homoacetogenic strain MC. Arch. Microbiol. 168, 136142.DOI: 10.1007/s002030050479
  • 11
    Sonoki, T., Obi, T., Kubota, S., Higashi, M., Masai, E. & Katayama, Y. (2000) Coexistence of two different O demethylation systems in lignin metabolism by Sphingomonas paucimobilis SYK-6: cloning and sequencing of the lignin biphenyl-specific O-demethylase (LigX) gene. Appl., Environ. Microbiol. 66, 21252132.DOI: 10.1128/AEM.66.5.2125-2132.2000
  • 12
    Masai, E., Katayama, Y., Nishikawa, S., Yamasaki, M., Morohoshi, N. & Haraguchi, T. (1989) Detection and localization of a new enzyme catalyzing the beta-aryl ether cleavage in the soil bacterium (Pseudomonas paucimobilis SYK-6). FEBS Lett. 249, 348352.DOI: 10.1016/0014-5793(89)80656-8
  • 13
    Masai, E., Katayama, Y., Kawai, S., Nishikawa, S., Yamasaki, M. & Morohoshi, N. (1991) Cloning and sequencing of the gene for a Pseudomonas paucimobilis enzyme that cleaves beta-aryl ether. J. Bacteriol. 173, 79507955.
  • 14
    Masai, E., Katayama, Y., Kubota, S., Kawai, S., Yamasaki, M. & Morohoshi, N. (1993) A bacterial enzyme degrading the model lignin compound beta-etherase is a member of the glutathione-S-transferase superfamily. FEBS Lett. 323, 135140.DOI: 10.1016/0014-5793(93)81465-C
  • 15
    Weinstein, A.D. & Gold, H.M. (1979) Synthesis of guaiacylglycerol and glycerol-β-O-(β-methylumbelliferyl) ethers: Lignin model substrates for the possible fluorometric assay of β-etherases. Holzforschung 33, 134135.
  • 16
    Peizer, L.R. & Vogel, H. (1969) An autoclavable medium for the isolation of mycobacteria. Am. Rev. Respir. 100, 582583.
  • 17
    Cleveland, D.W., Fischer, S.G., Kirschner, M.W. & Laemmli UK. (1977) Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J. Biol. Chem. 252, 11021106.
  • 18
    Kido, T. & Soda, K. (1976) A new oxigenase, 2-nitropropane dioxygenase of Hansenula mrakii. J. Biol. Chem. 251, 69947000.
  • 19
    Umezawa, T. (1988)Mechanisms of fungal degradation of lignin. Wood research, no. 75, 2678.
  • 20
    Sharp, R.F. (1975) The microbial colonization of some woods of small dimensions buried in soil. Can. J. Micrlbiol. 21, 784793.
  • 21
    Greaves, H. (1975) Microbiological aspects of wood chip storage in tropical environments. Aust. J. Biol. Sci. 28, 323330.
  • 22
    Mohtashamipur, E. & Norpoth, K. (1990) Release of mutagens after chemical degradation of beech wood lignin. Toxicol. Lett. 51, 277285.DOI: 10.1016/0378-4274(90)90070-3
  • 23
    Sarkanen, V.K. & Ludwig, H.C. (1971) Lignins: occurrence, formation, structure and reactions. Wiley-Interscience, John Wiley & Sons, Inc. NY, USA.
  • 24
    Gellerstedt, G. & Gierer, J. (1968) The reactions of lignin during neutral sulphite cooking, Part I. The behaviour of β-arylether structures. Acta. Chem. Scand. 22, 2510.
  • 25
    Freudenberg, K., Chen, L.C. & Cardinale, G. (1962) Die Oxydation des methylierten nauturlichen und kunstlichen Lignins Chem. Ber. 95, 2814.