SEARCH

SEARCH BY CITATION

References

  • 1
    Postma, P.W., Lengeler, J.W. & Jacobson, G.R. (1993) Phosphoenolpyruvate carbohydrate phosphotransferase system of bacteria. Microbiol. Rev. 57, 543594.
  • 2
    Brückner, R. & Titgemeyer, F. (2002) Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol. Lett. 209, 141148.
  • 3
    Bentley, S.D., Chater, K.F., Cerdeno-Tarraga, A.M., Challis, G.L., Thomson, N.R., James, K.D., Harris, D.E., Quail, M.A., Kieser, H., Harper, D. et al. (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3 (2). Nature 417, 141147.
  • 4
    Parche, S., Nothaft, H., Kamionka, A. & Titgemeyer, F. (2000) Sugar uptake and utilisation in Streptomyces coelicolor: a PTS view to the genome. Antonie Van Leeuwenhoek 78, 243251.
  • 5
    Titgemeyer, F., Walkenhorst, J., Cui, X., Reizer, J. & Saier, M.H. Jr (1994) Proteins of the phosphoenolpyruvate: sugar phosphotransferase system in Streptomyces: possible involvement in the regulation of antibiotic production. Res. Microbiol. 145, 8992.
  • 6
    Titgemeyer, F., Walkenhorst, J., Reizer, J., Stuiver, M.H., Cui, X. & Saier, M.H. Jr (1995) Identification and characterization of phosphoenolpyruvate: fructose phosphotransferase systems in three Streptomyces species. Micorobiology 141, 5158.
  • 7
    Butler, M.J., Deutscher, J., Postma, P.W., Wilson, T.J., Galinier, A. & Bibb, M.J. (1999) Analysis of a ptsH homologue from Streptomyces coelicolor A3 (2). FEMS Microbiol. Lett. 177, 279288.
  • 8
    Kamionka, A., Parche, S., Nothaft, H., Siepelmeyer, J., Jahreis, K. & Titgemeyer, F. (2002) The phosphotransferase system of Streptomyces coelicolor: IIA-Crr exhibits properties that resemble transport and inducer exclusion function of enzyme IIA-Glucose of Escherichia coli. Eur. J. Biochem. 269, 21432150.
  • 9
    Parche, S., Schmid, R. & Titgemeyer, F. (1999) The PTS system of Streptomyces coelicolor: identification and biochemical analysis of a histidine phosphocarrier protein HPr encoded by the gene ptsH. Eur. J. Biochem. 265, 308317.
  • 10
    Hammen, P.K., Waygood, E.B. & Klevit, R.E. (1991) Reexamination of the secondary and tertiary structure of histidine-containing protein from Escherichia coli by homonuclear and heteronuclear NMR spectroscopy. Biochemistry 30, 1184111850.
  • 11
    Van Nuland, N.A.J., Hangyi, I.W., Van Schaik, R.C., Berendsen, H.J.C., Van Gusteren, W.F., Scheek, R.M. & Robillard, G.T. (1994) The high-resolution structure of the histidine-containing phosphocarrier protein HPr from Escherichia coli determined by restrained molecular dynamics from nuclear magnetic resonance nuclear Overhauser effect data. J. Mol. Biol. 237, 544559.
  • 12
    Maurer, T., Doker, R., Gorler, A., Hengstenberg, W. & Kalbitzer, H.R. (2001) Three-dimensional structure of the histidine-containing phosphocarrier protein (HPr) from Enterococcus faecalis in solution. Eur. J. Biochem. 268, 635644.
  • 13
    Herzberg, O., Reddy, P., Sutrin, S., Saier, M.H. Jr, Reizer, J. & Kapafia, G. (1992) Structure of the histidine-containing phosphocarrier protein HPr from Bacillus subtilis at 2.0-Å resolution. Proc. Natl Acad. Sci. USA 89, 24992503.
  • 14
    Jia, Z., Quail, J.W., Waygood, E.B. & Delbaere, L.T.J. (1993) The 2.0-Å resolution structure of Escherichia coli histidine-containing phosphocarrier protein HPr: a redetermination. J. Biol. Chem. 268, 2249022501.
  • 15
    Pastore, A., Saudek, V., Ramponi, G. & Williams, R.J.P. (1992) Three-dimensional structure of acylphosphatase. Refinement and structure analysis. J. Mol. Biol. 224, 427440.
  • 16
    Van Nuland, N.A.J., Meijberg, W., Warner, J., Forge, V., Scheek, R.M., Robillard, G.T. & Dobson, C.M. (1998) Slow cooperative folding of a small globular protein HPr. Biochemistry 37, 622637.
  • 17
    Gunasekaran, K., Eyles, S.J., Haggler, A.T. & Gierasch, L.M. (2001) Keeping in the family: folding studies of related proteins. Cur. Opin. Struct. Biol. 11, 8393.
  • 18
    Pace, C.N. (1986) Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 131, 266280.
  • 19
    Miroux, B. & Walker, J.E. (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260, 289298.
  • 20
    Pace, C.N. & Scholtz, J.M. (1997) Measuring the conformational stability of a protein. In Protein Structure (Creighton, T.E., ed), 2nd edn, pp. 253259. Oxford University Press, Oxford.
  • 21
    Lakowicz, J.R. (1999) Principles of Fluorescence Spectroscopy, 2nd edn. Plenum Press, New York.
  • 22
    Woody, R.W. (1995) Circular dichroism. Methods Enzymol. 246, 3471.
  • 23
    Royer, C.A. (1995) Fluorescence stability. In Protein Stability and Folding (Shirley, B.A., ed), pp. 6589. Humana Press, Towota, New Jersey.
  • 24
    Scholtz, J.M. (1995) Conformational stability of HPr: the histidine-containing phosphocarrier protein from Bacillus subtilis. Protein Sci. 4, 3543.
  • 25
    Schellman, J.A. (1987) The thermodynamic stability of proteins. Annu. Rev. Biophys. Biophys. Chem. 16, 115137.
  • 26
    Aune, K.C. & Tandford, C. (1969) Thermodynamics of the denaturation of lysozyme by guanidine hydrochloride. II. Dependence on denaturant concentration at 25 degrees. Biochemistry 8, 45864590.
  • 27
    Hinkle, A., Goranson, A., Butters, C.A. & Tobacman, L.S. (1999) Roles for the troponin tail domain in thin filament assembly and regulation. A deletional study of cardiac troponin T. J. Biol. Chem. 274, 71577164.
  • 28
    Ackers, G.K. (1967) Molecular sieve studies of interacting protein systems. I. Equations for transport of associating systems. J. Biol. Chem. 242, 30263034.
  • 29
    Darlin, P.J., Holt, J.M. & Ackers, G.K. (2000) Coupled energetics of lambda cro repressor self-assembly and site-specific DNA operator binding I: analysis of cro dimerization from nanomolar to micromolar concentrations. Biochemistry 39, 1150011507.
  • 30
    Fernandez-Ballester, G., Castresana, J., Arrondo, J.L.R., Ferragut, J.A. & Gonzalez-Ros, J.M. (1992) Protein stability and interaction of the nicotinic acetylcholine receptor with cholinergic ligands studied by Fourier-transform infrared spectroscopy. Biochem. J. 288, 421426.
  • 31
    Moffat, D.J. & Mantsch, H.H. (1992) Fourier resolution enhancement of infrared spectra data. Methods Enzymol. 210, 192201.
  • 32
    Plum, G.E. & Breslauer, K.L. (1995) Calorimetry of proteins and nucleic acids. Cur. Opin. Struct. Biol. 5, 682690.
  • 33
    Eftink, M.R. (2000) Use of fluorescence spectroscopy as a thermodynamic tool. Methods Enzymol. 323, 459473.
  • 34
    Fink, A.L. (1995) Compact intermediate states in protein folding. Annu. Rev. Biophys. Biomol. Struct. 24, 495522.
  • 35
    Dignam, J.D., Qu, X. & Cahire, J.B. (2001) Equilibrium unfolding of Bombyx mori glycyl-tRNA synthetase. J. Biol. Chem. 276, 40284037.
  • 36
    Muzammil, S., Kumar, Y. & Tayyab, S. (2000) Anion-induced stabilization of human serum albumin prevents the formation of intermediate during urea denaturation. Proteins 40, 2938.
  • 37
    Semisotnov, G.V., Rodionova, N.A., Razgulyaev, O.I., Uversky, V.N., Gripas, A.F. & Gilmanshin, R.I. (1991) Study of the ‘molten globule’ intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers 31, 119128.
  • 38
    Gursky, O. (2001) Solution conformation of human apolipoprotein C-1 inferred from proline mutagenesis: far and near-UV CD study. Biochemistry 40, 1217812185.
  • 39
    Corbett, R.J.T. & Roche, R.S. (1984) Use of high speed size-exclusion chromatography for the study of protein folding and stability. Biochemistry 23, 18881894.
  • 40
    Neira, J.L. & Fersht, A.R. (1999) Acquisition of native–like interactions in C-terminal fragments of barnase. J. Mol. Biol. 287, 421432.
  • 41
    Sharma, S., Hammen, P.K., Anderson, J.W., Leung, A., Georges, F., Hengstenbeg, W., Klevit, R.E. & Waygood, E.B. (1993) Deamidation of HPr, a phosphocarrier protein of the phosphoenolpyruvate: sugar phosphotransferase system involves asparagines 38 (HPr-1) and aparagine 12 (HPr-2) in isoaspartyl acid formation. J. Biol. Chem. 268, 1769511770.
  • 42
    Arai, M. & Kuwajima, K. (2000) Role of the molten globule state in protein folding. Adv. Prot. Chem. 53, 209282.
  • 43
    Martinez, J.C., Viguera, A.R., Berisio, R., Wilmanns, M., Mateo, P.L., Filimonov, V.V. & Serrano, L. (1999) Thermodynamic analysis of alfa-spectrin SH3 and two of its circular permutants with different loop lengths: discerning the reasons for rapid folding in proteins. Biochemistry 38, 549559.
  • 44
    Jackson, S.E. (1998) How do small single-domain proteins fold? Fold Des. 3, R81R91.
  • 45
    Nicholson, E.M. & Scholtz, J.M. (1996) Conformational stability of the Escherichia coli HPr protein: test of the linear extrapolation method and a thermodynamic characterization of cold denaturation. Biochemistry 35, 1136911378.
  • 46
    Jamin, M. & Baldwin, R.L. (1996) Refolding and unfolding kinetics of the equilibrium folding intermediate of apomyoglobin. Nat. Struct. Biol. 3, 603618.
  • 47
    Cantor, C.R. & Schimmel, P.R. (1980) Biophysical Chemistry. W.H. Freeman Co, New York.
  • 48
    Genzor, C.G., Beldarraín, A., Gómez-Moreno, C., López-Lacomba, J.L., Cortijo, M. & Sancho, J. (1996) Conformational stability of apoflavodoxin. Protein Sci. 5, 13761388.
  • 49
    Anderson, W.J., Bhanot, P., Georges, F., Klevit, R.E. & Waygood, E.B. (1991) Involvement of the carboxy-terminal residue in the active site of the histidine-containing protein, HPr, of the phosphoenolpyruvate: sugar phosphotransferase system. Biochemistry 30, 96019607.
  • 50
    Kamen, D.E. & Woody, R.W. (2001) A partially folded intermediate conformation is induced in pectate lyase C by the addition of 8-anilino-1-naphtalenesulfonate (ANS). Protein Sci. 10, 21232130.
  • 51
    Eftink, M.R. (1994) The use of fluorescence methods to monitor unfolding transitions in proteins. Biophys. J. 66, 482501.