• 1
    Bartel, B. (1997) Auxin biosynthesis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 48, 5166.
  • 2
    Normanly, J. & Bartel, B. (1999) Redundancy as a way of life – IAA metabolism. Curr. Opin. Plant Biol. 2, 207213.
  • 3
    Kawaguchi, M. & Syono, K. (1996) The excessive production of indole-3-acetic acid and its significance in studies of the biosynthesis of this regulator of plant growth and development. Plant Cell Physiol. 37, 10431048.
  • 4
    Patten, C.L. & Glick, B.R. (1996) Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 42, 207220.
  • 5
    Koga, J., Syono, K., Ichikawa, T. & Adachi, T. (1994) Involvement of 1-tryptophan aminotransferase in indole-3-acetic acid biosynthesis of Enterobacter cloacae. Biochim. Biophsy. Acta 1209, 241247.
  • 6
    Koga, J., Adachi, T. & Hidaka, H. (1992) Purification and characterization of indolepyruvate decarboxylase. J. Biol. Chem. 267, 1582315828.
  • 7
    Sekimoto, H., Seo, M., Kawakami, N., Komano, T., Desloire, S., Liotenberg, S., Marion-Poll, A., Caboche, M., Kamiya, Y. & Koshiba, T. (1998) Molecular cloning and characterization of aldehyde oxidases in Arabidopsis thaliana. Plant Cell Physiol. 39, 433442.
  • 8
    Koga, J., Adachi, T. & Hidaka, H. (1991) Molecular cloning of the gene for indolepyruvate decarboxylase from Enterobacter cloacae. Mol. Gen. Genet. 226, 1016.
  • 9
    Brandl, M. & Lindow, S.E. (1996) Cloning and characterization of a locus encoding anindolepyruvate decarboxylase involved in indole-3-acetic acid synthesis in Erwiniaherbicola. Appl. Environ. Microbiol. 62, 41214128.
  • 10
    Zimmer, W., Hundeshagen, B. & Niederau, E. (1994) Demonstration of the indolepyruvate decarboxylase gene in different auxin-producing species of the Enterobacteriaceae. Can. J. Microbiol. 40, 10721076.
  • 11
    Costacurta, A., Keijers, V. & Vanderleyden, J. (1994) Molecular cloning and sequence analysis of an Azospirillum brasilense indole-3-pyruvate decarboxylase gene. Mol. Gen. Genet. 243, 463472.
  • 12
    Carreno-Lopez, R., Campos-Reales, N., Elmerich, C. & Baca, B.E. (2000) Physiological evidence for differently regulated tryptophan-dependent pathways for indole-3-acetic acid synthesis in Azospirillum brasilense. Mol. Gen. Genet. 264, 521530.
  • 13
    Yagi, K., Chujo, T., Nojiri, H., Omori, T., Nishiyama, M. & Yamane, H. (2001) Evidence for the presence of DNA-binding proteins involved in regulation of the gene expression of indole-3-pyruvic acid decarboxylase, a key enzyme in indole-3-acetic acid biosynthesis in Azospirillum lipoferum FS. Biosci. Biotechnol. Biochem. 65, 12651269.
  •  13a.
    Schütz, A., Golbik, R., Tittmann, K., Svergun, D.I., Koch, M.H.J., Hübner, G. & König, S. (2003) Studies on structure–function relationships of indolepyruvate decarboxylase from Enterobacter cloacae, a key enzyme of the indole acetic acid pathway. Eur. J. Biochem. 270, 23222331.
  • 14
    Arjunan, P., Umland, T., Dyda, F., Swaminathan, S., Furey, W., Sax, M., Farrenkopf, B., Gao, Y., Zhang, D. & Jordan, F. (1996) Crystal structure of the thiamine diphosphate-dependent enzyme pyruvate decarboxylase from the yeast Saccharomyces cerevisiae at 2.3 Å resolution. J. Mol. Biol. 256, 590600.
  • 15
    Dobritzsch, D., König, S., Schneider, G. & Lu, G. (1998) High resolution crystal structure of pyruvate decarboxylase from Zymomonas mobilis. J. Biol. Chem. 273, 2019620204.
  • 16
    Leslie, A.G.W. (1992) in Joint CCP4 and ESF-EACMB Newsletter on Protein Crystallography, no. 26. Daresbury Laboratory, Warrington, UK.
  • 17
    Collaborative Computational Project, Number, 4. (1994) The CCP.4 Suite: Programs for Protein Crystallography. Acta Crystallogr. D50, 760763.
  • 18
    Lu, G. (1999) PATTERN: a precession simulation programme for displaying reciprocal-space diffraction data. J. Appl. Crystallogr. 32, 375376.
  • 19
    Navaza, J. (1994) AMoRe: an automated package for molecular replacement. Acta Crystallogr. A50, 157163.
  • 20
    Matthews, B.W. (1968) Solvent content of protein crystals. J. Mol. Biol. 33, 491497.
  • 21
    König, S., Schütz, A., Svergun, D.I. & Koch, M.H.J. (2000) First SAXS measurements on indolepyruvate decarboxylase. Hasylab Annual Report 295296.
  • 22
    Brünger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.-S., Kuszewski, J., Nilges, M., Pannu, N.S., Read, R.J., Rice, L.M., Simonson, T. & Warren, G.L. (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D54, 905921.
  • 23
    Brunger, A.T. (1993) Assessment of phase accuracy by cross validation: the free R value. Methods and applications. Acta Crystallogr. D49, 2436.
  • 24
    Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110119.
  • 25
    Lu, G. (2000) TOP: a new method for protein structure comparisons and similarity searches. J. Appl. Crystallogr. 33, 176183.
  • 26
    Kraulis, P. (1991) Molscript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 26, 282291.
  • 27
    Esnouf, R.M. (1997) An extensively modified version of MolScript that includes generally enhanced colouring capabilities. J. Mol. Graph. Model 15 (132–134), 112113.
  • 28
    Merritt, E.A. & Bacon, D.J. (1997) Raster3D: Photorealistic Molecular Graphics. Methods Enzymol. 277, 505524.
  • 29
    Lu, G., Dobritzsch, D., Baumann, S., Schneider, G. & König, S. (2000) The structural basis of substrate activation in yeast pyruvate decarboxylase: a crystallographic and kinetic study. Eur. J. Biochem. 267, 861868.
  • 30
    Schellenberger, A. (1967) Structure and mechanism of action of the active center of yeast pyruvate decarboxylase. Angew. Chem. 6, 10241035.
  • 31
    Shin, W., Pletcher, J., Blank, G. & Sax, M. (1977) Ring stacking interactions between thiamin and planar molecules as seen in the crystal structure of a thiamin picrolonatedihydrate complex. J. Am. Chem. Soc. 99, 34913499.
  • 32
    Wikner, C., Meshalkina, L., Nilsson, U., Nikkola, M., Lindqvist, Y., Sundström, M. & Schneider, G. (1994) Analysis of an invariant cofactor–protein interaction in thiamin diphosphate-dependent enzymes by site-directed mutagenesis. Glutamic acid 418 in transketolase is essential for catalysis. J. Biol. Chem. 269, 3214432150.
  • 33
    Candy, J.M., Koga, J., Nixon, P.F. & Duggleby, R.G. (1996) The role of residues glutamate-50 and phenylalanine-496 in Zymomonas mobilis pyruvate decarboxylase. Biochem. J. 315, 745751.
  • 34
    Killenberg-Jabs, M., König, S., Eberhardt, I., Hohmann, S. & Hübner, G. (1997) Role of Glu51 for cofactor binding and catalytic activity in pyruvate decarboxylase from yeast studied by site-directed mutagenesis. Biochemistry 36, 19001905.
  • 35
    Kern, D., Kern, G., Neef, H., Tittmann, K., Killenberg-Jabs, M., Schneider, G. & Hübner, G. (1997) How thiamine diphosphate is activated in enzymes. Science 275, 6770.
  • 36
    Chang, A.K., Nixon, P.F. & Duggleby, R.G. (2000) Effects of deletions at the carboxyl terminus of Zymomonas mobilis pyruvate decarboxylase on the kinetic properties and substrate specificity. Biochemistry 39, 94309437.
  • 37
    Fiedler, E., Thorell, S., Sandalova, T., Golbik, R., König, S. & Schneider, G. (2002) Snapshot of a key intermediate in enzymatic thiamin catalysis: Crystal structure of the α-carbanion of (α,β-dihydroxyethyl) -thiamin diphosphate in the active site of transketolase from Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 99, 591595.
  • 38
    Lobell, M. & Crout, D.H.G. (1996) Pyruvate decarboxylase: a molecular modeling study of pyruvate decarboxylation and acyloin formation. J. Am. Chem. Soc. 118, 18671873.
  • 39
    Liu, M., Sergienko, E.A., Guo, F., Wang, J., Tittmann, K., Hübner, G., Furey, W. & Jordan, F. (2001) Catalytic acid-base groups in yeast pyruvate decarboxylase. 1. Site-directed mutagenesis and steady-state kinetic studies on the enzyme with the D28A, H114F, H115F, and E477Q substitutions. Biochemistry 40, 73557368.
  • 40
    Sergienko, E.A. & Jordan, F. (2001) Catalytic acid-base groups in yeast pyruvate decarboxylase.3. a steady state kinetic model consistent with the behavior of both wild-type and variant enzymes at all relevant pH values. Biochemistry 40, 73827403.
  • 41
    Schenk, G., Leeper, F.J., England, R., Nixon, P.F. & Duggleby, R. (1997) The role of His113 and His114 in pyruvate decarboxylase from Zymomonas mobilis. Eur. J. Biochem. 248, 6371.
  • 42
    Chang, A.K., Nixon, P.F. & Duggleby, R.G. (1999) Aspartate-27 and glutamate-473 are involved in catalysis of Zymomonas mobilis pyruvate decarboxylase. Biochem. J. 339, 255260.
  • 43
    Pohl, M., Siegert, P., Mesch, K., Bruhn, H. & Grotzinger, J. (1998) Active site mutants of pyruvate decarboxylase from Zymomonas mobilis—a site-directed mutagenesis study of L112, I472, I476, E473, and N482. Eur. J. Biochem. 257, 538546.
  • 44
    Bringer-Meyer, S., Schimz, K.L. & Sahm, H. (1986) Pyruvate decarboxylase from Zymomonas mobilis. Isolation and partial characterization. Arch. Microbiol. 146, 105110.
  • 45
    Hübner, G., König, S. & Schellenberger, A. (1988) The functional role of thiol groups of pyruvate decarboxylase from brewer's yeast. Biomed Biochim. Acta 47, 918.
  • 46
    Baburina, I., Gao, Y., Hu, Z., Jordan, F., Hohmann, S. & Furey, W. (1994) Substrate activation of brewers' yeast pyruvate decarboxylase is abolished by mutation of cysteine 221 to serine. Biochemistry 33, 56305635.
  • 47
    Baburina, I., Li, H., Bennion, B., Furey, W. & Jordan, F. (1998) Interdomain information transfer during substrate activation of yeast pyruvate decarboxylase: the interaction between cysteine 221 and histidine 92. Biochemistry 37, 12351244.
  • 48
    Muller, Y.A., Lindqvist, Y., Furey, W., Schulz, G.E., Jordan, F. & Schneider, G. (1993) A thiamin diphosphate binding fold revealed by comparision of the crystal structures of transketolase, pyruvate oxidase and pyruvate decarboxylase. Structure 1, 95103.