• 1
    Gardner, H.K. & Blackwell, J. (1974) The structure of native cellulose. Biopolymers 13, 19752001.
  • 2
    Hon, S.-N.D. (1994) Cellulose: a random walk along its historical path. Cellulose 1, 125.
  • 3
    Fan, T.L., Lee, H.-Y. & Beardmore, H.D. (1980) Major chemical and physical features of cellulosic materials as substrates for enzymatic hydrolysis, Adv. Biochem. Engineering 14, 101117.
  • 4
    Krässig, H. (1985) Structure of cellulose and its relation to properties of cellulose fibres. In Cellulose and its Derivatives (Kennedy, F.J., Phillips, G.O., Wedlock, D.J. & Williams, P.A., eds), pp. 325. Horwood, Chichester.
  • 5
    Gilkes, R.N., Jervis, E., Henrissat, B., Tekant, B., Miller, C.R. Jr, Warren, J.A.R. & Kilburn, G.D. (1992) The adsorption of a bacterial cellulase and its two isolated domains to crystalline cellulose. J. Biol. Chem. 267, 67346749.
  • 6
    Chanzy, H., Henrissat, B., Vuong, R. & Schülein, M. (1983) The action of 1,4-β-d-glucan cellobiohydrolase on Valonia cellulose microcrystals. An electron microscopic study. FEBS Lett. 153, 113118.
  • 7
    Chanzy, H. & Henrissat, B. (1985) Unidirectional degradation of Valonia cellulose microcrystals subjected to cellulase action. FEBS Lett. 184, 285288.
  • 8
    Medve, J., Karlsson, J., Lee, D. & Tjerneld, F. (1998) Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes. Biotechnol. Bioeng. 59, 621634.DOI: 10.1002/(SICI)1097-0290(19980905)59:5<621::AID-BIT13>3.0.CO;2-C
  • 9
    Divne, C., Ståhlberg, J., Teeri, T.T. & Jones, A.T. (1998) High-resolution crystal structures reveal how a cellulose chain is bound in the 50Å long tunnel of cellobiohydrolase Ι from Trichoderma reesei. J. Mol. Biol. 275, 309325.DOI: 10.1006/jmbi.1997.1437
  • 10
    Divne, C., Ståhlberg, J., Reinikainen, T., Ruohonen, L., Pettersson, G., Knowles, C.K.J., Teeri, T.T. & Jones, T.A. (1994) The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 265, 524528.
  • 11
    Teeri, T. (1997) Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol. 15, 160167.DOI: 10.1016/S0167-7799(97)01032-9
  • 12
    Ryu, Y.D.D., Kim, C. & Mandels, M. (1984) Competitive adsorption of cellulase components and its significance in a synergistic mechanism. Biotechnol. Bioeng. 26, 488496.DOI: 10.1002/bit.260260513
  • 13
    Woodward, J., Lima, M. & Lee, E.N. (1988) The role of cellulase concentration in determining the degree of synergism in the hydrolysis of microcrystalline cellulose. Biochem. J. 255, 895899.
  • 14
    Klyosov, A.A. (1990) Trends in biochemistry and enzymology of cellulose degradation. Biochemistry 29, 1057710585.
  • 15
    Wood, M.T. & McCrae, S.J. (1978) The cellulase of Trichoderma koningii. Purification and properties of some endoclucanase components with special reference to their action on cellulose when acting alone and in synergism with the cellobiohydrolase. Biochem. J. 171, 6172.
  • 16
    Wood, M.T. & McCrae, S.J. (1979) Synergism between enzymes involved in the solubilization of native cellulose. Adv. Chem. Ser. 181, 181209.
  • 17
    Hoshino, E., Shiroishi, M., Amano, Y., Nomura, M. & Kanda, T. (1997) Synergistic action of exo-type cellulases in the hydrolysis of cellulose with different crystallinities. J. Fermentation Bioengineering 4, 300306.DOI: 10.1016/S0922-338X(97)89248-3
  • 18
    Bhikhabhai, R., Johansson, G. & Pettersson, G. (1984) Isolation of cellulolytic enzymes from Trichoderma reesei QM 9414. J. Appl. Biochem. 6, 336345.
  • 19
    van Tilbeurgh, H., Bhikhabhai, R., Pettersson, G. & Claeyssens, M. (1984) Separation of endo- and exo-type cellulases using a new affinity chromatography method. FEBS Lett. 169, 215218.DOI: 10.1016/0014-5793(84)80321-X
  • 20
    Hörmann, H. & Gollwitzer, R. (1962) Bestimmung von hexosen in tryptophan-haltigen eiwesskörpern. Ann. Chem. 655, 178188.
  • 21
    Nelson, N.J. (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 153, 375380.
  • 22
    Somogyi, M. (1952) Notes on sugar determination. J. Biol. Chem. 195, 1923.
  • 23
    Ståhlberg, J., Johansson, G. & Pettersson, G. (1993) Trichoderma reesei has no true exo-cellulase: all intact and truncated cellulases produce new reducing end groups on cellulose. Biochim. Biophys. Acta 1157, 107113.
  • 24
    Segal, L., Creely, J.J., Martin, A.E. & Conrad, C.M. (1959) An empirical method for estimating the degree of crystallinity of native cellulose using X-ray diffractometer. Text. Res. J. 29, 786794.
  • 25
    Väljamäe, P., Sild, V., Pettersson, G. & Johansson, G. (1998) The initial kinetics of hydrolysis by cellobiohydrolases I and II is consistent with a cellulose surface-erosion model. Eur. J. Biochem. 253, 469475. DOI: 10.1046/j.1432-1327.1998.2530469.x
  • 26
    Feller, R.L., Lee, S.B. & Bogaard, J. (1986) The kinetic of cellulose deterioration. Adv. Chem. (ACS Series) 212, 329347.
  • 27
    Dadach, E.-Z., Pinto, Q.H.-J. & Kaliaguine, S. (1994) Acid hydrolysis of cellulose. Part II: stochastic simulation using a Monte Carlo technique. Can J. Chem Engineering 72, 106112.
  • 28
    Chang, M.M.Y. (1974) Crystallite structure of cellulose. J. Polymer Sci. 12, 13491374.
  • 29
    Samejima, M., Sugiyama, J., Igarashi, K. & Eriksson. L.K.-E. (1997) Enzymatic hydrolysis of bacterial cellulose. Carbohydrate Res. 305, 281288.DOI: 10.1016/S0008-6215(97)10034-9
  • 30
    Kleman-Leyer, K., Agosin, E., Conner, H.A. & Kirk, K.T. (1992) Changes in molecular size distribution of cellulose during attack by white rot and brown rot fungi. Appl. Env. Microbiol. 58, 12661270.
  • 31
    Kleman-Leyer, K., Gilkes, R.N., Miller, C.R. Jr & Kirk, K.T. (1994) Changes in the molecular-size distribution of insoluble celluloses by the action of recombinant Cellulomonas-fimi cellulases. Biochem. J. 302, 463469.
  • 32
    Kleman-Leyer, K., Siika-Aho, M., Teeri, T.T. & Kirk, K.T. (1996) The cellulases endoglucanase I and cellobiohydrolase II of Trichoderma reesei act synergistically to solubilize native cotton cellulose but not to decrease its molecular size. Appl. Environ. Microbiol. 62, 28832887.
  • 33
    Haigler, H.C., Brown, M.R. Jr & Benziman, M. (1980) Calcufluor White ST alters in vivo assembly of cellulose microfibrils. Science 210, 903906.
  • 34
    Kleywegt, G.J., Zou, J.-Y., Divne, C., Davies, G.J., Sinning, I., Ståhlberg, J., Reinikainen, T., Srisodsuk, M., Teeri, T. & Jones, T.A. (1997) The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 Å resolution, and a comparison with related enzymes. J. Mol. Biol. 272, 383397.DOI: 10.1006/jmbi.1997.1243