SEARCH

SEARCH BY CITATION

References

  • 1
    Girardet, J.M. & Linden, G. (1996) PP3 component of bovine milk: a phosphorylated whey glycoprotein. J. Dairy Res. 63, 333 350.
  • 2
    Sørensen, E.S. & Petersen, T.E. (1993) Purification and characterization of three proteins isolated from the proteose peptone fraction of bovine milk. J. Dairy Res. 60, 189 197.
  • 3
    Sørensen, E.S. & Petersen, T.E. (1993) Phosphorylation, glycosylation and amino acid sequence of component PP3 from the proteose peptone fraction of bovine milk. J. Dairy Res. 60, 535 542.
  • 4
    Johnsen, L.B., Sørensen, E.S., Petersen, T.E., Berglund, L. (1995) Characterization of a bovine mammary gland PP3 cDNA reveals homology with mouse and rat adhesion molecule GlyCAM-1. Biochim. Biophys. Acta 1260, 116 118.
  • 5
    Lasky, L.A., Singer, M.S., Dowbenko, D., Imai, Y., Henzel, W.J., Grimley, C., Fennie, C., Gillet, N., Watson, S.R., Rosen, S.D. (1992) An endothelial ligand for l-selectin is a novel mucin-like molecule. Cell 69, 927 938.
  • 6
    Johnsen, L.B., Petersen, T.E., Berglund, L. (1996) The bovine PP3 gene is homologous to the murine GlyCAM 1 gene. Gene 169, 297 298.DOI: 10.1016/0378-1119(95)00835-7
  • 7
    Groenen, M.A.M., Dijkhof, R.J.M., van der Poel, J.J. (1995) Characterization of a GlyCAM-1-like gene (glycosylation-dependent cell adhesion molecule 1) which is highly and specifically expressed in the lactating bovine mammary gland. Gene 158, 189 195.DOI: 10.1016/0378-1119(95)00138-v
  • 8
    Dowbenko, D., Watson, S.R., Lasky, L.A. (1993) Cloning of a rat homologue of mouse GlyCAM 1 reveals conservation of structural domains. J. Biol. Chem. 268, 14399 14403.
  • 9
    Beg, O.U., von Bahr-Lindström, H., Zaidi, Z.H., Jörnvall, H. (1987) Characterization of a heterogenous camel milk whey non-casein protein. FEBS Lett. 216, 270 274.
  • 10
    Lister, I.M.B., Rasmussen, L.K., Johnsen, L.B., Møller, L., Petersen, T.E., Sørensen, E.S. (1998) The primary structure of caprine PP3: amino acid sequence, phosphorylation, and glycosylation of component PP3 from the proteose-peptone fraction of caprine milk. J. Dairy Sci. 81, 2111 2115.
  • 11
    Girardet, J.M., Linden, G., Loye, S., Courthaudon, J.L., Lorient, D. (1993) Study of a mechanism of lipolysis inhibition by bovine milk proteose peptone component-3. J. Dairy Sci. 76, 2156 2163.
  • 12
    Sørensen, E.S., Rasmussen, L.K., Møller, L., Petersen, T.E. (1997) The localization and multimeric nature of component PP3 in bovine milk: purification and characterization of PP3 from caprine and ovine milk. J. Dairy Sci. 80, 3176 3181.
  • 13
    Christensen, B., Fink, J., Merrifield, R.B., Mauzerball, D. (1988) Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc. Natl Acad. Sci. USA 85, 5072 5076.
  • 14
    Matsuzaki, K., Murase, O., Fujii, N., Miyajima, K. (1995) Translocation of a channel-forming antimicrobial peptide, magainin 2, across lipid bilayers by forming a pore. Biochemistry 34, 6521 6526.
  • 15
    Campagna, S., Vitoux, B., Humbert, G., Girardet, J.M., Linden, G., Haertle, T., Gaillard, J.J. (1998) Conformational studies of a synthetic peptide from the putative lipid-binding domain of bovine milk component PP3. J. Dairy Sci. 81, 3139 3148.
  • 16
    Daugard, P., Langer, V., Thomsen, J.K., Nielsen, S., Sørensen, O.W., Jakobsen., H.J. (1995) A flat-coil NMR probe with hydration control of oriented phospholipid bilayer samples. J. Biomol. NMR 5, 311 314.
  • 17
    Marion, D., Ikura, M., Tschudin, R., Bax, A. (1989) Rapid recording of 2D NMR spectra without phase cycling. application to the study of hydrogen exchange in proteins. J. Magn. Reson. 85, 393 399.
  • 18
    Rance, M., Sørensen, O.W., Bodenhausen, G., Wagner, G., Ernst, R.R., Wüthrich, K. (1983) Improved spectral resolution in COSY 1H NMR spectra of proteins via double quantum filtering. Biochem. Biophys. Res. Com. 117, 479 485.
  • 19
    Braunschweiler, L. & Ernst, R.R. (1983) Coherence transfer by isotropic mixing: application to proton correlation spectroscopy. J. Magn. Reson. 53, 521 528.
  • 20
    Bax, A. & Davis, D.G. (1985) MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J. Magn. Reson. 65, 355 360.
  • 21
    Jeener, J., Meier, B.H., Bachmann, P., Ernst, R.R. (1979) Investigation of exchange processes by two-dimensional NMR spectroscopy. J. Chem. Phys. 71, 4546 4553.
  • 22
    Macura, S., Huang, Y., Suter, D., Ernst, R.R. (1981) Two-dimensional chemical exchange and cross-relaxation spectroscopy of coupled nuclear spins. J. Magn. Reson. 43, 259 281.
  • 23
    Shaka, A.J., Lee, C.J., Pines, A. (1988) Iterative schemes for bilinear operators; Application to spin decoupling. J. Magn. Reson. 77, 274 293.
  • 24
    Kjær, M., Andersen, K.V., Poulsen, F.M. (1994) Automated and semiautomated analysis of homo- and heteronuclear multidimensional nucelar magnetic resonance spectra of proteins: the program Pronto. Methods Emzymol. 239, 288 307.
  • 25
    Ludvigsen, S., Andersen, K.V., Poulsen, F.M. (1991) Accurate measurements of coupling constants from two-dimensional nuclear magnetic resonance spectra of proteins and determination of φ-angles. J. Mol. Biol. 217, 731 736.
  • 26
    Güntert, P., Braun, W., Wüthrich, K. (1991) Efficient Computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J. Mol. Biol. 217, 517 530.
  • 27
    Titman, J. & Keeler, J. (1990) Measurement of homonuclear coupling constants from NMR correlation spectra. J. Magn. Reson. 89, 640 646.
  • 28
    Brünger, A.T. (1992) X-PLOR, version 3.1. A system for crystallography and NMR. X-PLOR Manual. Yale University, New Haven, CT.
  • 29
    Nilges, M., Clore, G.M., Gronenborn, A.M. (1988) Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance geometry-dynamical simulated annealing calculations. FEBS Lett. 229, 317 324.
  • 30
    Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids. Wiley, New York, USA.
  • 31
    Pines, A., Gibby, M.G., Waugh, J.S. (1973) Proton-enhanced NMR of dilute spins in solids. J. Chem. Phys. 59, 569 590.
  • 32
    Bak, M., Rasmussen, J.T., Nielsen, N.C. (1999)SIMPSON: a general NMR simulation package (poster). 40th Experimental NMR Conference, Orlando, FL, USA.
  • 33
    Wishart, D.S., Richards, F.M., Sykes, B.D. (1992) The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31, 1647 1651.
  • 34
    Wishart, D.S. & Sykes, B.D. (1994) Chemical shifts as a tool for structure determination. Methods Enzymol. 239, 363 392.
  • 35
    Sundaralingham, M. & Sekharudu, Y.U. (1989) Water-inserted α-helical segments implicate reverse turns as folding intermediates. Science 244, 1333 1337.
  • 36
    Tirado-Rives, J. & Jorgensen, W.L. (1991) Molecular dynamics simulations of the unfolding of an α-helical analogue of ribonuclease a S-peptide in water. Biochemistry 30, 3864 3871.
  • 37
    Bradley, E.K., Thomason, J.F., Cohen, F.E., Kosen, P.A., Kuntz, I.D. (1990) Studies of synthetic helical peptides using circular dichroism and nuclear magnetic resonance. J. Mol. Biol. 215, 607 622.
  • 38
    Woody, R.W. (1978) Aromatic side-chain contributions to the far ultraviolet circular dichroism of peptides and proteins. Biopolymers 17, 1451 1467.
  • 39
    Chen, Y.-H., Yang, J.T., Chau, K.H. (1974) Determination of the helix and β-form of proteins in aqueous solution by circular dichroism. Biochemistry 13, 3350 3359.
  • 40
    Oas, T.G., Hartzell, C.J., Dahlquist, F.W., Drobny, G.P. (1987) The amide 15N chemical shielding tensors of four peptides determine from 13C dipole-coupled chemical shift powder patterns. J. Am. Chem. Soc. 109, 5962 5966.
  • 41
    Teng, Q. & Cross, T.A. (1989). The in situ determination of the 15N chemical-shift tensor orientation in a polypeptide. J. Magn. Reson. 85, 439 447.
  • 42
    Shoji, A., Ando, S., Kuroki, S., Ando, I., Webb, G.A. (1993). Structural studies of peptides and polypeptides in the solid state by nitrogen-15 NMR. Ann. Reports NMR Spectroscopy 26, 55 98.
  • 43
    Le, H. & Oldfield, E. (1994). Correlation between 15N NMR chemical shifts in proteins and secondary structure. J. Biomol. NMR. 4, 341 348.
  • 44
    Tian, F. & Cross, T.A. (1998) Cation binding induced in 15N CSA in a membrane-bound polypeptide. J. Magn. Reson. 135, 535 540.DOI: 10.1006/jmre.1998.1596
  • 45
    Ketchem., R.R., Hu, W., Cross, T.A. (1993) High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science 261, 1457 1460.
  • 46
    Bechinger, B., Kim, Y., Chirlian, L.E., Gesell, J., Neumann, J.-M., Montal, M., Tomich, J., Zasloff, M., Opella, S.J. (1991). Orientations of amphipathic helical peptides in membrane bilayers determined by solid-state NMR spectroscopy. J. Biomol. NMR. 1, 167 173.
  • 47
    Bechinger, B., Zasloff, M., Opella, S.J. (1993). Structure and orientation of the antibiotic peptide magainin in membranes by solid-state nuclear magnetic resonance spectroscopy. Protein Sci. 2, 2077 2084.
  • 48
    Dyson, H.J. & Wright, P.E. (1991) Defining solution conformations of small linear peptides. Ann. Rev. Biophys. Chem. 20, 519 538.
  • 49
    Alder, A.J., Greenfield, N.J., Fasman, G.D. (1973) Circular dichroism and optical rotatory dispersion of proteins and polypeptides. Methods Enzymol. 27, 675 735.
  • 50
    Chakrabartty, A., Kortemme, T., Padmanabhan, S., Baldwin, R.L. (1993) Aromatic side-chain contribution to far-ultraviolet circular dichroism of helical peptides and its effect on measurement of helix propensities. Biochemistry 32, 5560 5565.
  • 51
    Su, Y.Y. & Jirgensons, B. (1977) Further studies of detergent-induced conformational transitions in proteins. Circular dichroism of ovalbumin, bacterial alpha-amylase, papain, and beta-lactoglobulin at various pH values. Arch. Biochem. Biophys. 181, 137 146.
  • 52
    Barlow, D.J. & Thomson, J.M. (1988) Helix geometry in proteins. J. Mol. Biol. 201, 601 619.
  • 53
    Zhou, N.E., Zhu, B.-Y., Sykes, B.D., Hodges, R.S. (1992) Relationship between amide proton chemical shifts and hydrogen bonding in amphipathic α-helical peptides. J. Am. Chem. Soc. 114, 4320 4326.
  • 54
    McLeish, M., Nielsen, K.J., Najbar, L.V., Wade, J.D., Lin, F., Doughty, M.B., Craik, D.J. (1994) Conformation of a peptide corresponding to T4 lysozyme residues 59–81 by NMR and CD spectroscopy. Biochemistry 33, 11174 11183.
  • 55
    Wishart, D.S., Sykes, B.D., Richards, F.M. (1991) Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J. Mol. Biol. 222, 311 333.