SEARCH

SEARCH BY CITATION

References

  • 1
    Simmaco, M., Mignogna, G., Barra, D. (1998) Antimicrobial peptides from amphibian skin: what do they tell us? Biopolymers 47, 435 450.DOI: 10.1002/(sici)1097-0282(1998)47:6<435::aid-bip3>3.0.co;2-8
  • 2
    Boman, H.G. (1995) Peptide antibiotics and their role in innate immunity. Annu. Rev. Immun. 13, 61 92.
  • 3
    Simmaco, M., Boman, A., Mangoni, M.L., Mignogna, G., Miele, R., Barra, D., Boman, H.G. (1997) Effect of glucocorticoids on the synthesis of antimicrobial peptides in amphibian skin. FEBS Lett. 416, 273 275.DOI: 10.1016/s0014-5793(97)01216-7
  • 4
    Barra, D., Simmaco, M., Boman, H.G. (1998) Gene-encoded peptide antibiotics and innate immunity. Do “animalcules” have defence budgets? FEBS Lett. 430, 130 134.DOI: 10.1016/s0014-5793(98)00494-3
  • 5
    Miele, R., Ponti, D., Boman, H.G., Barra, D., Simmaco, M. (1998) Molecular cloning of a bombinin gene from Bombina orientalis: Detection of NF-κB and NF-IL6 binding sites in its promoter. FEBS Lett. 431, 23 28.DOI: 10.1016/s0014-5793(98)00718-2
  • 6
    Simmaco, M., Mangoni, M.L., Boman, A., Barra, D., Boman, H.G. (1998) Experimental infections of Rana esculenta with Aeromonas hydrophila. A molecular mechanism for the control of the normal flora. Scand. J. Immunol. 48, 357 363.
  • 7
    Calderon, R.O. & DeVries, G.H. (1997) Lipid composition and phospholipid asymmetry of membrane from a Schwann cell line. J. Neurosci. Res. 49, 372 380.DOI: 10.1002/(sici)1097-4547(19970801)49:3<372::aid-jnr12>3.0.co;2-1
  • 8
    Ojcius, D.M. & Young, J.D.-E. (1991) Cytolytic pore-forming proteins and peptides: is there a common structural motif? Trends Biochem. Sci. 16, 225 229.
  • 9
    Shai, Y. (1995) Molecular recognition between membrane-spanning polypeptides. Trends Biochem. Sci. 20, 460 464.
  • 10
    Simmaco, M., Mignogna, G., Canofeni, S., Miele, R., Mangoni, M.L., Barra, D. (1996) Temporins, novel antimicrobial peptides from the european red frog Rana temporaria. Eur. J. Biochem. 242, 788 792.
  • 11
    Selsted, M.E., Novotny, M.J., Morris, W.L., Tang, Y.-Q., Smith, W., Cullor, J.S. (1992) Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J. Biol. Chem. 267, 4292 4295.
  • 12
    Romeo, D., Skerlavaj, B., Bolognesi, M., Gennaro, R. (1988) Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils. J. Biol. Chem. 263, 9573 9575.
  • 13
    Falla, T.J., Karunaratne, D.N., Hancock, R.E.W. (1996) Mode of action of the antimicrobial peptide indolicidin. J. Biol. Chem. 271, 19298 19303.
  • 14
    Wu, M. & Hancock, R.E.W. (1999) Interaction of the cyclic antimicrobial cationic peptide bactenecin with the outer and cytoplasmic membrane. J. Biol. Chem. 274, 29 35.
  • 15
    Szoka, F. & Papahadjopoulos, D. (1978) Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc. Natl Acad. Sci. USA 75, 4194 4198.
  • 16
    Stewart, J.C. (1980) Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal. Biochem. 104, 10 14.
  • 17
    Allen, T.M. (1984) Calcein as a tool in liposome methodology. In Liposome Technology, Vol. 3 (Gregoriadis, G., ed.), pp. 177 182, CRC, Boca Raton.
  • 18
    Hultmark, D., Engström, A., Bennich, H., Kapur, R., Boman, H.G. (1982 ). Insect immunity: isolation and structure of recropin D and four minor antibacterial components from Cecropia pupae. Eur. J. Biochem. 127, 207 217.
  • 19
    Ponti, D., Mignogna, G., Mangoni, M.L., De Biase, D., Simmaco, M., Barra, D. (1999) Expression and activity of cyclic and linear analogues of esculentin-1, an antimicrobial peptide from amphibian skin. Eur. J. Biochem. 263, 921 927.DOI: 10.1046/j.1432-1327.1999.00597.x
  • 20
    Lehrer, R.I., Barton, A., Ganz, T. (1988) Concurrent assessment of inner and outer membrane permeabilization and bacteriolysis in E. coli by multiple-wavelength spectrophotometry. J. Immunol. Methods 108, 153 158.
  • 21
    Normark, S., Boman, H.G., Matsson, E. (1969) Mutant of Escherichia coli with anomalous cell division and ability to decrease episomally and chromosomally mediated resistance to ampicillin and several other antibiotics. J. Bacteriol. 97, 1334 1342.
  • 22
    Matsuzaki, K., Sugishita, K., Fujii, N., Miyajima, K. (1995) Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry 34, 3423 3429.
  • 23
    Ghosh, A.K., Rukmini, R., Chattopadhyay, A. (1997) Modulation of tryptophan environment in membrane-bound melittin by negatively charged phospholipids: implications in membrane organization and function. Biochemistry 36, 14291 14305.
  • 24
    Wieprecht, T., Dathe, M., Beyermann, M., Krause, E., Maloy, W.L., MacDonald, D.L., Bienert, M. (1997) Peptide hydrophobicity controls the activity and selectivity of magainin 2 amide in interaction with membranes. Biochemistry 36, 6124 6132.
  • 25
    Argiolas, A. & Pisano, J.J. (1984) Isolation and characterization of two new peptides, mastoparan C and crabrolin, from the venom of the European hornet, Vespa crabro. J. Biol. Chem. 259, 10106 10111.
  • 26
    Subbalakshmi, C., Krisnhakumari, V., Nagaraj, R., Sitaram, N. (1996) Requirements for antibacterial and hemolytic activities in the bovine neutrophil derived 13-residue peptide indolicidin. FEBS Lett. 395, 48 52.DOI: 10.1016/0014-5793(96)00996-9
  • 27
    Sitaram, N. & Nagaraj, R. (1990) A synthetic 13-residue peptide corresponding to the hydrophobic region of bovine seminal plasmin has antibacterial activity and also causes lysis of red blood cells. J. Biol. Chem. 265, 10438 10442.
  • 28
    Sitaram, N., Subbalakshmi, C., Nagaraj, R. (1995) Structural and charge requirements for antimicrobial and hemolytic activity in the peptide PKLLETFLSKWIG, corresponding to the hydrophobic region of the antimicrobial protein bovine seminalplasmin. Int. J. Peptide Res. 46, 166 173.
  • 29
    Eisenberg, D. (1984) Three-dimensional structure of membrane and surface proteins. Annu. Rev. Biochem. 53, 595 623.
  • 30
    Prehm, P., Stirm, S., Jann, B., Jann, K., Boman, H.G. (1976) Cell-wall lipopolysaccharides of ampicillin-resistant mutants of Escherichia coli K12. Eur. J. Biochem. 66, 369 377.
  • 31
    Schiffer, M. & Edmundson, A.B. (1967) Use of helical wheels to represent the structures of proteins and to identify segments with helical potential. Biophys. J. 7, 121 135.
  • 32
    Matsuzaki, K., Nakamura, A., Murase, O., Sugishita, K., Fujii, N., Miyajima, K. (1997) Modulation of magainin 2–lipid bilayer interactions by peptide charge. Biochemistry 36, 2104 2111.
  • 33
    Oren, Z. & Shai, Y. (1996) A class of highly potent antibacterial peptides derived from pardaxin, a pore-forming peptide isolated from Moses sole fish Pardachirus marmoratus. Eur. J. Biochem. 237, 303 310.
  • 34
    Oren, Z. & Shai, Y. (1998) Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers 47, 451 463.DOI: 10.1002/(sici)1097-0282(1998)47:6<451::aid-bip4>3.0.co;2-f