SEARCH

SEARCH BY CITATION

References

  • 1
    Veiga da Cunha, M., Firme, P., San Romão, M.V. & Santos, H. (1992) Application of 13C nuclear magnetic resonance to elucidate the unexpected biosynthesis of erythritol by Leuconostoc oenos. Appl. Environ. Microbiol. 58, 22712279.
  • 2
    Ferain, T., Schanck, A.N. & Delcour, J. (1996) 13C nuclear magnetic resonance analysis of glucose and citrate end products in an ldhL-ldhD double knockout strain of Lactobacillus plantarum. J. Bacteriol. 178, 73117315.
  • 3
    Hols, P., Ramos, A., Hugenholtz, J., Delcour, J., de Vos, W.M., Santos, H. & Kleerebezem, M. (1999) Acetate utilization in Lactococcus lactis deficient in lactate dehydrogenase: a rescue pathway for maintaining the redox balance. J. Bacteriol. 181, 55215526.
  • 4
    Lopez de Felipe, F., Kleerebezem, M., de Vos, W.M. & Hugenholtz, J. (1998) Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase. J. Bacteriol. 180, 38043808.
  • 5
    Garrigues, C., Loubiere, P., Lindley, N.D. & Cocaign-Bousquet, M. (1997) Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. J. Bacteriol. 179, 52825287.
  • 6
    Lopez de Felipe, F., Starrenburg, M.J.C. & Hugenholtz, J. (1997) The role of NADH-oxidation in acetoin and diacetyl production from glucose in Lactococcus lactis subsp. lactis MG1363. FEMS Lett. 156, 1519.
  • 7
    Neves, A.R., Ramos, A., Nunes, M.C., Kleerebezem, M., Hugenholtz, J., de Vos, W.M., Almeida, J. & Santos, H. (1999) In vivo NMR studies of glycolytic kinetics in Lactococcus lactis. Biotechnol. Bioeng. 64, 200212.DOI: 10.1002/(sici)1097-0290(19990720)64:2<200::aid-bit9>3.0.co;2-k
  • 8
    Platteeuw, C., Hugenholtz, J., van Starrenburg, M., Alen-Boerrigter, I. & de Vos, W.M. (1995) Metabolic engineering of Lactococcus lactis: influence of the overproduction of α-acetolactate synthase in strains deficient in lactate dehydrogenase as a function of culture conditions. Appl. Environ. Microbiol. 61, 39673971.
  • 9
    Chen, R. & Bailey, J. (1993) Observations of aerobic, growing Escherichia coli metabolism using an on-line nuclear magnetic resonance spectroscopy system. Biotechnol. Bioeng. 42, 215221.
  • 10
    Ramos, A. & Santos, H. (1996) Citrate and sugar cofermentation in Leuconostoc oenos, a 13C nuclear magnetic resonance study. Appl. Environ. Microbiol. 62, 25772585.
  • 11
    Ramos, A., Jordan, K.N., Cogan, T.M. & Santos, H. (1994) Carbon 13 nuclear magnetic resonance studies of citrate and glucose cometabolism by Lactococcus lactis. Appl. Environ. Microbiol. 60, 17391748.
  • 12
    Schoberth, S.M. & de Graaf, A.A. (1993) Use of in vivo13C nuclear magnetic resonance spectroscopy to follow sugar uptake in Zymomonas mobilis. Anal. Biochem. 210, 123128.DOI: 10.1006/abio.1993.1161
  • 13
    Ugurbil, K., Brown, T.R., den Hollander, J.A., Glynn, P. & Schulman, R.G. (1978) High-resolution 13C nuclear magnetic resonance studies of glucose metabolism in Escherichia coli. Proc. Natl Acad. Sci. USA 75, 37423746.
  • 14
    Berthon, H.A., Bubb, W.A. & Kuchel, P.W. (1993) 13C NMR isotopomer and computer-simulation studies of the non-oxidative pentose phosphate pathway of human erythrocytes. Biochem. J. 296, 379387.
  • 15
    Gasson, M.J., Benson, K., Swindel, S. & Griffin, H. (1996) Metabolic engineering of the Lactococcus lactis diacetyl pathway. Lait 76, 3340.
  • 16
    Bradford, M.M. (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein dye-binding. Anal. Biochem. 72, 248254.
  • 17
    Poolman, B., Smid, E.J., Veldkamp, H. & Konings, W.N. (1987) Bioenergetic consequences of lactose starvation for continuously cultured Streptococcus cremoris. J. Bacteriol. 169, 14601468.
  • 18
    Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. & Smith, F. (1956) Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350356.
  • 19
    Canela, E.I., Cascante, M. & Franco, R. (1990) Practical determination of control coefficients in metabolic pathways. In Control of Metabolic Processes(Cornish-Bowden, A. & Cárdenas, M.L., eds), pp. 157169. NATO ASI Series 190, New York.
  • 20
    Fordyce, A.M., Moore, C.H. & Pritchard, G.G. (1982) Phosphofructokinase from Streptococcus lactis. Methods Enzymol. 90, 7783.
  • 21
    Babul, J. & Guixé, V. (1983) Fructose bisphosphatase from Escherichia coli. Purification and characterization. Arch. Biochem. Biophys. 225, 944949.
  • 22
    Lee, C.A., Jacobson, G.R., Saier, J.R. & H. (1981) Plasmid-directed synthesis of enzymes required for d-mannitol transport and utilization in Escherichia coli. Proc. Natl Acad. Sci. USA 78, 73367340.
  • 23
    Hult, K. & Gatenbeck, S. (1979) Enzyme activities of the mannitol cycle and some connected pathways in Alternaria alternata, with comments on the regulation of the cycle. Acta Chem. Scand. B 33, 239243.
  • 24
    Ames, B.N. (1966) Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol. 8, 115118.
  • 25
    den Hollander, J.A., Ugurbil, K. & Schulman, R.G. (1986) 31P and 13C NMR studies of intermediates of aerobic and anaerobic glycolysis in Saccharomyces cerevisiae. Biochemistry 25, 212219.
  • 26
    Koerner, T.A.W., Voll, R.J., Cary, L.W. & Younathan, E.S. (1980) Carbon-13 nuclear magnetic resonance studies and anomeric composition of ketohexose phosphates in solution. Biochemistry 19, 27952801.
  • 27
    Midelfort, C.F., Gupta, R.K. & Rose, I.A. (1976) Fructose 1,6-bisphosphate: isomeric composition, kinetics, and substrate specificity for the aldolases. Biochemistry 15, 21782185.
  • 28
    Edwards, K.G., Blumenthal, H.J., Khan, M. & Slodki, M.E. (1981) Intracellular mannitol, a product of glucose metabolism in staphylococci. J. Bacteriol. 146, 10201029.
  • 29
    Ezra, F.S., Lucas, D.S., Mustacich, R.V. & Russel, A.F. (1983) Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of anaerobic glucose metabolism and lactate transport in Staphylococcus aureus cells. Biochemistry 22, 38413849.
  • 30
    Helle, K.B. & Klungsøyr, L. (1962) Mannitol-1-phosphate in E. coli during glucose utilization. Biochim. Biophys. Acta. 65, 461471.
  • 31
    Loesche, W.J. & Kornman, K.S. (1976) Production of mannitol by Streptococcus mutants. Arch. Oral Biol. 21, 551553.
  • 32
    Rosenberg, H., Pearce, S.M., Hardy, C.M. & Jacomb, P.A. (1984) Rapid turnover of mannitol-1-phosphate in Escherichia coli. J. Bacteriol. 158, 5358.
  • 33
    Dills, S.D. & Seno, S. (1983) Regulation of hexitol catabolism in Streptococcus mutans. J. Bacteriol. 153, 861866.
  • 34
    Postma, P.W. & Lengeler, J.W. (1985) Phosphoenolpyruvate: carbohydrate phosphotransferase system of bacteria. Microbiol. Rev. 49, 232269.
  • 35
    Bolotine, A., Mauger, S., Malarme, K., Ehrlich, S.D. & Sorokine, A. (1999) Low-redundancy sequencing of the entire Lactococcus lactis IL1403 genome. Antonie Van Leeuwenhoek. 76, 2776.
  • 36
    Lengeler, J. (1975) Mutations affecting transport of the hexitols d-mannitol, d-glucitol, and galactitol in Escherichia coli K-12: isolation and mapping. J. Bacteriol. 124, 2638.
  • 37
    Llanos, R.M., Harris, C.J., Hillier, A.J. & Davidson, B.E. (1993) Identification of a novel operon in Lactococcus lactis encoding three enzymes for lactic acid synthesis: phosphofructokinase, pyruvate kinase, and lactate dehydrogenase. J. Bacteriol. 175, 25412551.
  • 38
    Nielsen, J. (1998) Metabolic engineering: techniques for analysis of targets for genetic manipulations. Biotechnol. Bioeng. 58, 125132.
  • 39
    Stephanopoulos, G. (1999) Metabolic fluxes and metabolic engineering. Metabolic Engineering. 1, 111.DOI: 10.1006/mben.1998.0101
  • 40
    Bailey, J. (1991) Toward a science of metabolic engineering. Science 252, 16681675.
  • 41
    de Vos, W.M., Hols, P., van Kranenburg, R., Luesink, E., Kuipers, O.P., van der Oost, J., Kleerebezem, M. & Hugenholtz, J. (1998) Making more of milk sugar by engineering lactic acid bacteria. Int. Dairy J. 8, 227233.DOI: 10.1016/s0958-6946(98)00049-1
  • 42
    Hugenholtz, J. & Kleerebezem, M. (1999) Metabolic engineering of lactic acid bacteria: overview of the approaches and results of pathway rerouting involved in food fermentations. Curr. Opin. Biotechnol. 10, 492497.43.DOI: 10.1016/s0958-1669(99)00016-6