SEARCH

SEARCH BY CITATION

Keywords:

  • desferrioxamine;
  • ferrochelatase;
  • iron–sulfur cluster;
  • iron;
  • K562 cells

Mammalian ferrochelatase, the terminal enzyme of the heme biosynthetic pathway, catalyzes the insertion of a ferrous ion into protoporphyrin and contains a labile [2Fe−2S] cluster center at the C-terminus. To clarify the roles of the iron–sulfur cluster in the expression of mammalian ferrochelatase, enzyme activity in human erythroleukemia K562 cells under iron-depleted conditions was examined. Treatment of cells with an iron chelator, desferrioxamine, resulted in a decrease in enzyme activity, in a dose- and time-dependent manner. Heme content decreased during desferrioxamine treatment of the cells. Addition of ferric ion-nitrilotriacetate [Fe (III)NTA] to desferrioxamine-containing cultures led to restoration of the reduction in the enzyme activity. While RNA blots showed that the amount of ferrochelatase mRNA remained unchanged during these treatments, the amount of ferrochelatase decreased with a concomitant decrease in enzyme activity. When full-length human ferrochelatase was expressed in Cos7 cells, the activity was found mainly in the mitochondria and was decreased markedly by treatment with desferrioxamine. The activity in Cos7 cells expressing human ferrochelatase in cytoplasm decreased with desferrioxamine, but to a lesser extent. When Escherichia coli ferrochelatase, which lacks the iron–sulfur cluster, was expressed in Cos7 cells, the activity did not change following any treatment. Conversely, the addition of Fe (III)NTA to the culture of K562 and Cos7 cells led to an increase in ferrochelatase activity. These results indicate that the expression of mammalian ferrochelatase is regulated by intracellular iron levels, via the iron–sulfur cluster center at the C-terminus, and this contributes to the regulation of the biosynthesis of heme at the terminal step.