SEARCH

SEARCH BY CITATION

References

  • 1
    Davis, D.D. (1967) Glyoxylate as a substrate for PDC. Biochem. J. 104, 50.
  • 2
    Boiteux, A. & Hess, B. (1970) Allosteric properties of yeast pyruvate decarboxylase. FEBS Lett 9, 293296.
  • 3
    Hübner, G., Weidhase, R. & Schellenberger, A. (1978) The mechanism of substrate activation of pyruvate decarboxylase: a first approach. Eur. J. Biochem. 92, 175181.
  • 4
    Arjunan, P., Umland, T., Dyda, F., Swaminathan, S., Furey, W., Sax, M., Farrenkopf, B., Gao, Y., Zhang, D. & Jordan, F. (1996) Crystal structure of the thiamin diphosphate-dependent enzyme pyruvate decarboxylase from the yeast S. cerevisiae at 2.3 Å resolution. J. Mol. Biol. 256, 590600.DOI: 10.1006/jmbi.1996.0111
  • 5
    Ullrich, J., Wittorf, J.H. & Gubler, C.J. (1966) Molecular weight and coenzyme content of pyruvate decarboxylase from brewer’s yeast. Biochem. Biophys. Acta 113, 595604.
  • 6
    Hopmann, R.F.W. (1980) Hydroxyl-ion-induced subunit dissociation of yeast cytoplasmic pyruvate decarboxylase. A circular dichroism study. Eur. J. Biochem. 110, 311318.
  • 7
    Schellenberger, A. (1967) Struktur und Wirkungsweise des aktiven Zentrums der Hefe-Pyruvatdecarboxylase. Angew. Chem. 79, 10501061.
  • 8
    Schellenberger, A. & Hübner, G. (1967) Theory of the action of thiamine pyrophosphate. IV. Mechanism and kinetics of recombination and binding relations derived therefrom at the active center of yeast pyruvate decarboxylase. Hoppe Seyler’s Z. Physiol. Chem. 348, 491500.
  • 9
    König, S., Svergun, D., Koch, M.H.J., Hübner, G. & Schellenberger, A. (1992) Synchrotron radiation solution X-ray scattering study of the pH dependence of the quaternary structure of yeast pyruvate decarboxylase. Biochemistry 31, 87268731.
  • 10
    König, S., Svergun, D., Koch, M.H.J., Hübner, G. & Schellenberger, A. (1993) The influence of the effectors of yeast pyruvate decarboxylase (pdc) on the conformation of the dimers and tetramers and their pH-dependent equilibrium. Eur. Biophys. J. 22, 185194.
  • 11
    Killenberg-Jabs, M., König, S., Eberhardt, I., Hohmann, S. & Hübner, G. (1997) The role of Glu51 for cofactor binding and catalytic activity in pyruvate decarboxylase from yeast studied by site-directed mutagenesis. Biochemistry 36, 19001905.
  • 12
    Holzer, H. & Beaucamp, K. (1959) Nachweis und Charakterisierung von Zwischenprodukten der Decarboxylierung und Oxidation von Pyruvat: ‘aktives Pyruvat’ und ‘aktiver Acetaldehyd’. Angew. Chem. 71, 776.
  • 13
    Hesterberg, L.K. & Lee, J.C. (1981) Self-association of rabbit muscle phosphofructokinase at pH 7.0: stoichiometry. Biochemistry 20, 29742980.
  • 14
    Luther, M.A., Cai, G. & Lee, J.C. (1986) Thermodynamics of dimer and tetramer formations in rabbit muscle phosphofructokinase. Biochemistry 25, 79317937.
  • 15
    Eisenhaber, F. & Argos, P. (1993) Improved strategy in analytic surface calculation for molecular systems: handling of singularities and computational efficiency. J. Comp. Chem. 14, 12721280.
  • 16
    Chothia, C. (1975) The nature of accessibility and buried surfaces in proteins. J. Mol. Biol. 105, 114.
  • 17
    Demchenko, A.P. (1986) In Ultraviolet Spectroscopy of Proteins (Demchenko, A.P., ed.), pp. 145146. Springer-Verlag, Berlin, Germany.
  • 18
    Eftink, M.R. (1994) The use of fluorescence methods to monitor unfolding transitions in proteins. Biophys. J. 66, 482501.
  • 19
    Gorovits, B.M., Seale, J.W. & Horowitz, P.M. (1995) Residual structure in urea-denatured chaperonin GroEL. Biochemistry 34, 1392813933.
  • 20
    Lu, G., Dobritzsch, D., König, S. & Schneider, G. (1997) Novel tetramer assembly of pyruvate decarboxylase from brewer’s yeast observed in a new crystal form. FEBS Lett 403, 249253.DOI: 10.1016/s0014-5793(97)00057-4
  • 21
    Baburina, I., Gao, Y., Hu, Z. & Jordan, F. (1994) Substrate activation of brewer’s yeast pyruvate decarboxylase is abolished by mutation of cysteine 221 to serine. Biochemistry 33, 56305635.
  • 22
    Alvarez, F.J., Ermer, J., Hübner, G., Schellenberger, A. & Schowen, R.L. (1991) Catalytic power of pyruvate decarboxylase. Rate-limiting events and microscopic rate constants from primary carbon and secondary hydrogen isotope effects. J. Am. Chem. Soc. 113, 84028409.
  • 23
    Alvarez, F.J., Ermer, J., Hübner, G., Schellenberger, A. & Schowen, R.L. (1995) The linkage of catalysis and regulation in enzyme action. Solvent isotope effects as probes of protonic sites in the yeast pyruvate decarboxylase mechanism. J. Am. Chem. Soc. 117, 16781683.