• 1
    Szyperski, T. (1995) Biosynthetically directed fractional 13C-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism. Eur. J. Biochem. 232, 433448.
    Direct Link:
  • 2
    Senn, H., Werner, B., Messerle, B.A., Weber, C., Traber, R., Wüthrich, K. (1989) Stereospecific assignment of the methyl 1H NMR lines of valine and leucine in polypeptides by nonrandom 13C labeling. FEBS Lett. 249, 113118.
  • 3
    Neri, D., Szyperski, T., Otting, G., Senn, H., Wüthrich, K. (1989) Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. Biochemistry 28, 75107516.
  • 4
    Wüthrich, K., Szyperski, T., Leiting, B., Otting, G. (1992) Biosynthetic pathways of the common proteinogenic amino acids investigated by fractional 13C labeling and NMR spectroscopy. In Frontiers and New Horizons in Amino Acid Research ( Takai, K., ed.), pp. 4148. Elsevier, Amsterdam.
  • 5
    Szyperski, T., Bailey, J.E., Wüthrich, K. (1996) Detecting and dissecting metabolic fluxes using biosynthetic fractional 13C labeling and two-dimensional NMR spectroscopy. Trends Biotechnol. 14, 453459.DOI: 10.1016/s0167-7799(96)10056-1
  • 6
    Sauer, U., Hatzimanikatis, V., Bailey, J.E., Hochuli, M., Szyperski, T., Wüthrich, K. (1997) Metabolic fluxes in riboflavin-producing Bacillus subtilis. Nat. Biotechnol. 15, 448452.
  • 7
    Hochuli, M., Patzelt, H., Oesterhelt, D., Wüthrich, K., Szyperski, T. (1999) Amino acid biosynthesis in the halophilic archaeon Haloarcula hispanica. J. Bacteriol. 181, 32263237.
  • 8
    Fiaux, J., Andersson, C.I.J., Holmberg, N., Bülow, L., Kallio, P.T., Szyperski, T., Bailey, J.E., Wüthrich, K. (1999) 13C-NMR flux ratio analysis of Escherichia coli central carbon metabolism in microaerobic bioprocesses. J. Am. Chem. Soc. 121, 14071408.DOI: 10.1021/ja983786y
  • 9
    Sauer, U., Lasko, D.R., Fiaux, J., Hochuli, M., Glaser, R., Szyperski, T., Wüthrich, K., Bailey, J.E. (1999) Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central carbon metabolism. J. Bacteriol. 181, 66796688.
  • 10
    Schmidt, K., Nørregaard, L.C., Pedersen, B., Meissner, A., Dues, J.Ø., Nielsen, J.O., Villadsen, J. (1999) Quantification of intracellular metabolic fluxes from fractional enrichment and 13C-13C coupling constraints on the isotopomer distribution in labeled biomass components. Metabolic Eng. 1, 166179.DOI: 10.1006/mben.1999.0114
  • 11
    Hochuli, M., Szyperski, T., Wüthrich, K. (2000) Deuterium isotope effects on the central carbon metabolism of Escherichia coli cells grown on a D2O-containing minimal medium. J. Biomol. NMR 17, 3342.
  • 12
    Szyperski, T. (1998) 13C-NMR, MS and metabolic flux balancing in biotechnology research. Q. Rev. Biophys. 31, 41106.
  • 13
    Reference withdrawn.
  • 14
    Szyperski, T., Glaser, R.W., Hochuli, M., Fiaux, J., Sauer, U., Bailey, J.E., Wüthrich, K. (1999) Bioreaction network topology and metabolic flux ratio analysis by biosynthetic fractional 13C labeling and two-dimensional NMR spectroscopy. Metabolic Eng. 1, 189197.DOI: 10.1006/mben.1999.0116
  • 15
    Michal, G. (1998). Biochemical Pathways: an Atlas of Biochemistry and Molecular Biology. Wiley, New York.
  • 16
    Rose, A.H. & Harrison, J.S., eds (1989) The Yeasts: Metabolism and Physiology. Academic Press, New York.
  • 17
    Strathern, J.N., Jones, E.W., Broach, J.R., eds (1982) Molecular Biology of the Yeast Saccharomyces. Metabolism and Gene Expression. Cold Spring Harbor Laboratory Press, Plainview, New York.
  • 18
    Zimmermann, F.K. & Entian, K.D. (1997) Yeast Sugar Metabolism: Biochemistry, Genetics, Biotechnology and Applications. Technomic Publishing. Lancaster.
  • 19
    Mewes, H.W., Albermann, K., Bähr, M., Frishman, D., Gleissner, A., Hani, J., Heumann, K., Kleine, K., Maierl, A., Oliver, S.G., Pfeiffer, F., Zollner, A. (1997) Overview of the yeast genome. Nature 387 (Suppl.), 765.
  • 20
    Hieter, P., Basset, D.E.J., Valle, D. (1996) The yeast genome – a common currency. Nat. Genet. 13, 253255.
  • 21
    Johnston, M. (1996) Genome sequencing: the complete code for a eukaryotic cell. Curr. Biol. 6, 500503.
  • 22
    Bodenhausen, G. & Ruben, D. (1980) Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem. Phys. Lett. 69, 185188.
  • 23
    Szyperski, T., Neri, D., Leiting, B., Otting, G., Wüthrich, K. (1992) Support of 1H NMR assignments in proteins by biosynthetically directed fractional 13C-labeling. J. Biomol. NMR 2, 323334.
  • 24
    Güntert, P., Dötsch, V., Wider, G., Wüthrich, K. (1992) Processing of multi-dimensional NMR data with the new software PROSA. J. Biomol. NMR 2, 619629.
  • 25
    Fraenkel, D.G. (1982) Carbohydrate metabolism. In Molecular Biology of the Yeast Saccharomyces. Metabolism and Gene Expression (Strathern, J.N., Jones, E.W. & Broach, J.R., eds), pp. 137. Cold Spring Harbor Laboratory Press, Plainview, New York.
  • 26
    Gancedo, C. & Serrano, R. (1989) Energy-yielding metabolism. In The Yeasts, Vol. 3, Metabolism and Physiology of Yeasts (Rose, A.H. & Harrison, J.S., eds), pp. 205251. Academic Press, New York.
  • 27
    Pronk, J.T., Steensma, H.Y., van Dijken, J.P. (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12, 16071633.DOI: 10.1002/(sici)1097-0061(199612)12:16<1607::aid-yea70>;2-4
  • 28
    Kispal, G., Sumegi, B., Dietmeier, K., Bock, I., Gajdos, G., Tomcsanyi, T., Sandor, A. (1993) Cloning and sequencing of a cDNA encoding Saccharomyces cerevisiae carnitine acetyltransferase. J. Biol. Chem. 268, 18241829.
  • 29
    van Roermund, C.W.T., Hettema, E.H., van der Berg, M., Tabak, H.F., Wanders, R.J.A. (1999) Molecular characterization of carnitine-dependent transport of acetyl-CoA from peroxisomes to mitochondria in Saccharomyces cerevisiae and identification of a plasma membrane carnitine transporter, Agp2p. EMBO J. 18, 58435852.DOI: 10.1093/emboj/18.21.5843
  • 30
    Palmieri, L., Vozza, A., Agrimi, G., De Marco, V., Runswick, M.J., Palmieri, F., Walkers, J.E. (1999) Identification of the yeast mitochondrial transporter for oxaloacetate and sulfate. J. Biol. Chem. 274, 2218422190.
  • 31
    Rohde, M., Lim, F., Wallace, J.C. (1991) Electron microscopic localization of pyruvate carboxylase in rat liver and Saccharomyces cerevisiae by immunogold procedures. Arch. Biochem. Biophys. 290, 197201.
  • 32
    van Urk, H., Schipper, D., Breedveld, G.J., Mak, P.R., Scheffers, W.A., van Dijken, J.P. (1989) Localization and kinetics of pyruvate-metabolizing enzymes in relation to aerobic alcoholic fermentation in Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621. Biochim. Biophys. Acta 992, 7886.
  • 33
    Fuck, E., Stärk, G., Radler, F. (1973) Äpfelsäurestoffwechsel bei Saccharomyces. II. Anreicherung und Eigenschaften eines Malatenzyms. Arch. Microbiol. 89, 223231.
  • 34
    Boles, E., de Jong-Gubbels, P., Pronk, J.T. (1998) Identification and characterization of MAE1, the Saccharomyces cerevisiae structural gene encoding mitochondrial malic enzyme. J. Bacteriol. 180, 28752882.
  • 35
    Nalecz, M.J., Nalecz, K.A., Azzi, A. (1991) Purification and functional characterisation of the pyruvate (monocarboxylate) carrier from baker’s yeast mitochondria (Saccharomyces cerevisiae). Biochim. Biophys. Acta 1079, 8795.
  • 36
    Haarasilta, S. & Taskinen, R. (1977) Location of three key enzymes of gluconeogenesis in baker’s yeast. Arch. Microbiol. 113, 159161.
  • 37
    Steensma, H.Y. (1997) From pyruvate to acetyl-coenzyme A and oxaloacetate. In Yeast Sugar Metabolism. Biochemistry, Genetics, Biotechnology and Applications ( Zimmermann, F.K. & Entian, K.-D., eds), pp. 339357. Technomic Publishing, Lancaster, UK.
  • 38
    Atomi, H., Ueda, M., Suzuki, J., Kamada, Y., Tanaka, A. (1993) Presence of carnitine acetyltransferase in peroxisomes and in mitochondria of oleic acid-grown Saccharomyces cerevisiae. FEMS Microbiol. Lett. 112, 3134.
  • 39
    Indiveri, C., Iacobazzi, V., Giangregorio, N., Palmieri, F. (1998) Bacterial overexpression, purification, and reconstitution of the carnitine/acylcarnitine carrier from rat liver mitochondria. Biochem. Biophys. Res. Commun. 249, 589594.DOI: 10.1006/bbrc.1998.9197
  • 40
    Duntze, W., Neumann, D., Gancedo, J.M., Atzpodien, W., Holzer, H. (1969) Studies on the localization of the glyoxylate cycle enzymes in Saccharomyces cerevisiae. Eur. J. Biochem. 10, 8389.
  • 41
    McCammon, M.T., Veenhuis, M., Trapp, S.B., Goodman, J.M. (1990) Association of glyoxylate and beta-oxidation enzymes with peroxisomes of Saccharomyces cerevisiae. J. Bacteriol. 172, 58165827.
  • 42
    Entian, K.-D. & Schüller, H.-J. (1997) Glucose repression (carbon catabolite repression) in yeast. In Yeast Sugar Metabolism. Biochemistry, Genetics, Biotechnology, and Applications (Zimmermann, F.K. & Entian, K.-D., eds). Technomic Publishing, Lancaster, UK.
  • 43
    Minard, K.I. & McAlister-Henn, L. (1992) Glucose-induced degradation of the MDH2 isozyme of malate dehydrogenase in yeast. J. Biol. Chem. 267, 1745817464.
  • 44
    McNeil, J.B., McIntosh, E.M., Taylor, B.V., Zhang, F.-R., Tang, S., Bognar, A.L. (1994) Cloning and molecular characterization of three genes, including two genes encoding serine hydroxymethyltransferases, whose inactivation is required to render yeast auxotrophic for glycine. J. Biol. Chem. 269, 91559165.
  • 45
    McNeil, J.B., Bognar, A.L., Pearlman, R.E. (1996) In vivo analysis of folate coenzymes and their compartmentation in Saccharomyces cerevisiae. Genetics 142, 371381.
  • 46
    Ogur, M., Liu, T.N., Cheung, I., Paulavicius, I., Wales, W., Mehnert, D., Blaise, D. (1977) ‘Active’ one-carbon generation in Saccharomyces cerevisiae. J. Bacteriol. 129, 926933.
  • 47
    Tzagoloff, A. (1982) Mitochondria. Plenum Press, New York.
  • 48
    Liu, J.Q., Nagata, S., Dairi, T., Misosno, H., Shimizu, S., Yamada, H. (1997) The GLY1 gene of Saccharomyces cerevisiae encodes a low-specific l-threonine aldolase that catalyzes cleavage of l-allo-threonine and l-threonine to glycine – expression of the gene in Escherichia coli and purification and characterization of the enzyme. Eur. J. Biochem. 245, 289293.
  • 49
    Ryan, E.D., Tracy, J.W., Kohlhaw, G.B. (1973) Subcellular localization of the leucine biosynthetic enzymes in yeast. J. Bacteriol. 116, 222225.
  • 50
    Ryan, E.D. & Kohlhaw, G.B. (1974) Subcellular localization of isoleucine-valine biosynthetic enzymes in yeast. J. Bacteriol. 120, 631637.
  • 51
    Chen, S., Brockenbrough, J.S., Dove, J.E., Aris, J.P. (1997) Homocitrate synthase is located in the nucleus in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 272, 1083910846.
  • 52
    Monschau, N., Stahmann, K.P., Sahm, H., McNeil, J.B., Bognar, A.L. (1997) Identification of Saccharomyces cerevisiae GLY1 as a threonine aldolase: a key enzyme in glycine biosynthesis. FEMS Microbiol. Lett. 150, 5560.DOI: 10.1016/s0378-1097(97)00096-7
  • 53
    Hradzina, G. & Jensen, R.A. (1992) Spatial organization of enzymes in plant metabolic pathways. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 241267.
  • 54
    Sherry, A.D., Sumegi, B., Miller, B., Cottam, G.L., Gavva, S., Jones, J.G., Malloy, C.R. (1994) Orientation-conserved transfer of symmetric Krebs cycle intermediates in mammalian tissue. Biochemistry 33, 62686275.
  • 55
    Ovadi, J. & Srere, P.A. (1992) Channel your energies. Trends Biochem. Sci. 17, 445447.
  • 56
    Sherry, A.D. & Malloy, C.R. (1996) Isotopic methods for probing organization of cellular metabolism. Cell Biochem. Func. 14, 259268.
  • 57
    Kholodenko, B.N., Westerhoff, H.V., Cascante, M. (1996) Effect of channeling on the concentration of bulk-phase intermediates as cytosolic proteins become more concentrated. Biochem. J. 313, 921926.
  • 58
    Chasin, L.A., Feldman, A., Konstam, M., Urlaub, G. (1974) Isolation of a chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc. Natl Acad. Sci. USA 71, 718722.
  • 59
    Gancedo, J.M. & Lagunas, R. (1973) Contribution of the pentose-phosphate pathway to glucose metabolism in Saccharomyces cerevisiae: a critical analysis on the use of labelled glucose. Plant Sci. Lett. 1, 193200.
  • 60
    Boles, E., Lehnert, W., Zimmermann, F.K. (1993) The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant. Eur. J. Biochem. 217, 469477.
  • 61
    Bruinenberg, P.M., Jonker, R., van Dijken, J.P., Scheffers, W.A. (1985) Utilization of formate as an additional energy source by glucose-limited chemostat cultures of Candida utilis CBS621 and Saccharomyces cerevisiae CBS8066. Evidence for the absence of transhydrogenase activity in yeasts. Arch. Microbiol. 142, 302306.
  • 62
    Wales, D.S., Cartledge, T.G., Lloyd, D. (1980) Effects of glucose repression and anaerobiosis on the activities and subcellular distribution of tricarboxylic acid cycle enzymes in Saccharomyces carlsbergensis. J. Gen. Microbiol. 116, 9398.
  • 63
    Zitomer, R.S. & Lowry, C.V. (1992) Regulation of gene expression by oxygen in Saccharomyces cerevisiae. Microbiol. Rev. 56, 111.
  • 64
    Polakis, E.S. & Bartley, W. (1965) Changes in the enzyme activities of Saccharomyces cerevisiae during aerobic growth on different carbon sources. Biochem. J. 97, 284297.
  • 65
    Lancar-Benda, J., Foucher, B., Saint-Macary, M. (1996) Characterization, purification and properties of the yeast mitochondrial dicarboxylate carrier (Saccharomyces cerevisiae). Biochimie 78, 195200.DOI: 10.1016/0300-9084(96)89505-8
  • 66
    Palmieri, L., Palmieri, F., Runswick, M.J., Walker, J.E. (1996) Identification by bacterial expression and functional reconstitution of the yeast genomic sequence encoding the mitochondrial dicarboxylate carrier protein. FEBS Lett. 399, 299302.DOI: 10.1016/s0014-5793(96)01350-6
  • 67
    Palmieri, L., Vozza, A., Hönlinger, A., Dietmeier, K., Palmisano, A., Zara, V., Palmieri, F. (1999) The mitochondrial dicarboxylate carrier is essential for the growth of Saccharomyces cerevisiae on ethanol or acetate as the sole carbon source. Mol. Microbiol. 31, 569577.
  • 68
    Bojunga, N., Kötter, P., Entian, K.-D. (1998) The succinate/fumarate transporter Acr1p of Saccharomyces cerevisiae is part of the gluconeogenetic pathway and its expression is regulated by Cat8p. Mol. Gen. Genet. 260, 453461.
  • 69
    Palmieri, L., Lasorsa, F.M., De Palma, A., Palmieri, F., Runswick, M.J., Walker, J.E. (1997) Identification of the yeast ACR1 gene product as a succinate-fumarate transporter essential for growth on ethanol or acetate. FEBS Lett. 417, 114118.DOI: 10.1016/s0014-5793(97)01269-6
  • 70
    Kaplan, R.S., Mayor, J.A., Gremse, D.A., Wood, D.A. (1995) High level expression and characterization of the mitochondrial transport protein from the yeast Saccharomyces cerevisiae. J. Biol. Chem. 270, 41084114.
  • 71
    Conover, T.E. (1987) Does citrate transport supply both acetyl groups and NADPH for cytoplasmic fatty acid synthesis? Trends Biochem. Sci. 12, 8889.
  • 72
    Pasternack, L.B., Laude, D.A.J., Appling, D.R. (1992) 13C NMR detection of folate-mediated serine and glycine synthesis in vivo in Saccharomyces cerevisiae. Biochemistry 31, 87138719.
  • 73
    Pasternack, L.B., Laude, D.A.J., Appling, D.R. (1994) Whole-cell detection by 13C NMR of metabolic flux through the C1-tetrahydrofolate synthase/serine hydroxymethyltransferase enzyme system and effect of antifolate exposure in Saccharomyces cerevisiae. Biochemistry 33, 71667173.
  • 74
    Pasternack, L.B., Littlepage, L.E., Laude, D.A.J., Appling, D.R. (1996) 13C NMR analysis of the use of alternative donors to the tetrahydrofolate-dependent one-carbon pools in Saccharomyces cerevisiae. Arch. Biochem. Biophys. 326, 158165.DOI: 10.1006/abbi.1996.0060
  • 75
    Tran-Dinh, S., Beganton, F., Nguyen, T.-T., Bouet, F., Herve, M. (1996) Mathematical model for evaluating the Krebs cycle flux with non-constant glutamate-pool size by 13C-NMR spectroscopy. Evidence for the existence of two types of Krebs cycles in cells. Eur. J. Biochem. 242, 220227.
  • 76
    Tran-Dinh, S., Bouet, F., Huynh, Q.-T., Herve, M. (1996) Mathematical models for determining metabolic fluxes through the citric acid and glyoxylate cycles in Saccharomyces cerevisiae by 13C-NMR spectroscopy. Eur. J. Biochem. 242, 770778.
  • 77
    Flores, C., Rodriguez, C., Petit, T., Gancedo, C. (2000) Carbohydrate and energy-yielding metabolism in non-conventional yeasts. FEMS Microbiol. Rev. 24, 507529.DOI: 10.1016/s0168-6445(00)00037-1
  • 78
    Bailey, J.E. (1991) Toward a science of metabolic engineering. Science 252, 16681675.
  • 79
    Stephanopoulos, G. & Sinskey, A.J. (1993) Metabolic engineering – methodologies and future prospects. Trends Biotech. Sci. 11, 392396.
  • 80
    Christensen, B. & Nielsen, J. (1999) Isotopomer analysis using GC-MS. Metabolic Eng. 1, 282290.
  • 81
    Wittmann, C. & Heinzle, C. (1999) Mass spectrometry for metabolic flux analysis. Biotechnol. Bioeng. 62, 739750.DOI: 10.1002/(sici)1097-0290(19990320)62:6<739::aid-bit13>;2-5
  • 82
    Dauner, M. & Sauer, U. (2000) GC-MS analysis of amino acids rapidly provides rich information for isotopomer balancing. Biotechnol. Prog. 16, 642649.DOI: 10.1021/bp000058h
  • 83
    Volschenk, H., Viljoen, M., Grobler, J., Petzold, B., Bauer, F., Subden, R., Young, R., Lonvaud, A., Denayrolles, M., van Vuuren, H. (1997) Engineering pathways for malate degradation in Saccharomyces cerevisiae. Nat. Biotechnol. 15, 253257.
  • 84
    James, P. (1997) Protein identification in the post-genome era: the rapid rise of proteomics. Quart. Rev. Biophys. 30, 279331.
  • 85
    Gerhold, D., Rushmore, T., Caskey, C.T. (1999) DNA chips: promising toys have become powerful tools. Trends Biochem. Sci. 24, 168173.DOI: 10.1016/s0968-0004(99)01382-1
  • 86
    Theobald, U., Mailinger, W., Baltes, M., Rizzi, M., Reuss, M. (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: I. Experimental observations. Biotechnol. Bioeng. 55, 305316.DOI: 10.1002/(sici)1097-0290(19970720)55:2<305::aid-bit8>;2-m
  • 87
    Mailinger, W., Baumeister, A., Reuss, M., Rizzi, M. (1998) Rapid and highly automated determination of adenine and pyridine nucleotides in extracts of Saccharomyces cerevisiae using a micro robotic sample preparation-HPLC system. J. Biotechnol. 63, 155157.DOI: 10.1016/s0168-1656(98)00095-9
  • 88
    IUPAC-IUB Commission on Biochemical Nomenclature (1970) Abbreviations and symbols for the description of the conformation of polypeptide chains. Biochemistry 9, 34713479.
  • 89
    Hansen, P.E. (1988) Isotope effects in nuclear shielding. Prog. NMR Spectrosc. 20, 207255.