We investigated the mechanisms of sexual selection in the common dung fly Sepsis cynipsea and how these affect selection on body size at the population level. Because of the presumed costs associated with mating, we predicted that there would be a decrease in the general reluctance of females to mate with any particular male at higher male densities at the mating site, a fresh cow pat, resulting in indirect female choice and a decrease in the strength of sexual selection. In contrast, classical direct female choice and male-male competition should result in increased selection intensities because more opportunities for choice and competition exist at higher densities. Female reluctance to mate and female assessment of males are expressed in prominent female behaviour to repel mates in several insect species, including S. cynipsea. Laboratory pair-wise choice experiments showed that large males were more likely to obtain copulations, which also ensued more promptly, suggesting female assessment of male quality (direct female choice). There was a basic influence of male activity but little further effect of male scramble competition on the outcome of mating. Another laboratory experiment showed a decrease in female shaking duration per male, associated with an asymptote in the shaking duration per female, as male density and harassment increased, but did not show the increase in mating frequency predicted by the female reluctance hypothesis. A study estimating sexual selection differentials in the field showed that directional selection for larger males was present overall and was negatively related to seasonally mediated variation in male density. Our study suggests that direct female choice in combination with indirect female choice (due to an interaction of female reluctance to mate and male persistence) is most consistent with the behavioural and selection patterns observed in S. cynipsea, but male effects cannot be definitively excluded.