SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Gardos G. The function of calcium in the potassium permeability of human erythrocytes. Biochem. Biophys. Acta 1958; 30: 653 4.
  • 2
    Meech RW & Strümwasser F. Intracellular calcium injection activates potassium conductance in Aplysia nerve cells. Fed. Proc. 1970; 29: 834 6.
  • 3
    Marty A. The physiological role of calcium-dependent channels. Trends Neurosci. 1989; 12: 420 5.
  • 4
    Haylett DG & Jenkisnon DH. Calcium activated potassium channels. In: Cook NA (ed.). Potassium Channels: Structure, Classification, Function and Therapeutic Potential. John Wiley and Sons, London. 1990.
  • 5
    Latorre R, Oberhauser A, Labarca P, Alvarez O. Varieties of calcium-activated potassium channels. Annu. Rev. Physiol. 1989; 51: 385 99.
  • 6
    Hirschberg B, Maylie J, Adelman JP, Marrion NV. Gating of recombinant small-conductance Ca-activated K+ channels by calcium. J. Gen. Physiol. 1998; 111: 565 81.
  • 7
    Greffrath W, Martin E, Reuss S, Boehmer G. Component of after- hyperpolarisation in magnocellular neurones of the rat supraoptic nucleus in vitro. J. Physiol. 1998; 513: 493 506.
  • 8
    Vegara C, Latorre R, Marrion NV, Adelman JP. Calcium-activated potassium channels. Curr. Opin. Neurobiol. 1998; 8: 321 9.
  • 9
    Lagrutta A, Shen K-Z, North RA, Adelman JP. Functional differences among alternatively spliced variants of Slowpoke, a Drosophila calcium-activated potassium channel. J. Biol. Chem. 1994; 269: 20 347 51.
  • 10
    Tseng-Crank J, Foster CD, Krause JD et al. Cloning, expression, and distribution of functionally distinct Ca2+-activated K+ channel isoforms from human brain. Neuron 1994; 13: 1315 30.
  • 11
    Rosenblatt KP, Sun Z-P, Heller S, Hudspeth AJ. Distribution of Ca2+-activated K+ channel isoforms along the tonotopic gradient of the chickens cochlea. Neuron 1997; 19: 1061 75.
  • 12
    Kohler M, Hischberg B, Bond CT et al. Small-conductance, calcium-activated potassium channels from mammalian brain. Science 1996; 273: 1709 14.
  • 13
    Xia X-M, Falker B, Rivard A et al. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 1998; 395: 503 7.
  • 14
    Adams PR, Constanti A, Brown DA, Clark RB. Intaracellular Ca2+ activates a fast voltage-sensitive K+ current in vertebtrate sensory neurones. Nature 1982; 296: 746 9.
  • 15
    Pennefather P, Lancaster B, Adams PR, Nicoll RA. Two distinct Ca-dependent K currents in bullfrog sympathetic ganglionic cells. Proc. Natl Acad. Sci. USA 1985; 82: 3040 4.
  • 16
    Sah P. Calcium2+-activated K+ currents in neurones: Types, physiological roles and modulation. Trends Neurosci. 1996; 19: 150 4.
  • 17
    Cassell JF & McLachlan EM. Two calcium-activated potassium conductances in a subpopulation of coeliac neurones of guinea-pig and rabbit. J. Physiol. 1987; 394: 331 49.
  • 18
    Sah P & McLachlan EM. Ca2+ activated K+ currents underlying the afterhyperpolarization in guinea pig vagal neurons: A role for Ca2+ activated Ca2+ release. Neuron 1991; 7: 257 64.
  • 19
    Schwindt PC, Spain WJ, Foehring RC, Stafstrom CE, Shubb MC, Crill WE. Multiple potassium conductances and their functions in neurons from cat sensorimotor cortex in vitro. J. Neurophysiol. 1988; 59: 424 49.
  • 20
    Knopfel T, Vranesic I, Gahwiler BH, Brown DA. Muscarinic and β-adrenergic depression of the slow Ca2+ activated potassium conductance in hippocampal CA3 pyramidal cells is not mediated by a reduction of the depolarization-induced cytosolic Ca2+ transients. Proc. Natl Acad. Sci. USA 1990; 87: 4083 7.
  • 21
    Sah P & Isaacson JS. Channels underlying the slow afterhyperpolarization in hippocampal pyramidal neurons: Neurotransmitters modulate the open probability. Neuron 1995; 15: 435 41.
  • 22
    Sah P & Clements JD. Photolytic manipulation of [Ca2+]i reveals slow kinetics of potassium channels underlying the afterhyperpolarisation in hippocampal pyramidal neurons. J. Neurosci. 1999; 19: 3657 64.
  • 23
    North RA & Tokimasa T. Depression of a calcium-dependent potassium conductance of guinea-pig myenteric neurones by muscarinic agonists. J. Physiol. 1983; 342: 253 66.
  • 24
    Hirst GDS, Johnson SM, Van Helden DF. The slow calcium-dependent potassium current in a myenteric neurone of the guinea-pig ileum. J. Physiol. 1985; 361: 315 37.
  • 25
    Lancaster B & Adams PR. Calcium-dependent current generating the afterhyperpolarization of hippocampal neurons. J. Neurophysiol. 1986; 55: 1268 82.
  • 26
    Valiante TA, Abdul-Ghani MA, Carlen PL, Pennefather P. Analysis of current fluctuations during after-hyperpolarization current in dentate granule neurones of the rat hippocampus. J. Physiol. 1997; 499: 121 34.
  • 27
    Lancaster B & Zucker RS. Photolytic manipulation of Ca2+ and the time course of slow, Ca2+-activated potassium current in rat hippocampal neurones. J. Physiol. 1994; 475: 229 39.
  • 28
    Zhang L, Pennefather P, Velumian A, Tymionski M, Charlton M, Carlen PL. Potentiation of a slow Ca2+-dependent K+ current by intracellular Ca2+ chelators in hippocampal CA1 neurons of rat brain slices. J. Neurophysiol. 1996; 74: 2225 41.
  • 29
    Schiller J, Helmchen F, Sakmann B. Spatial profile of dendritic calcium transients evoked by action potentials in rat neocortical pyramidal neurones. J. Physiol. 1995; 487: 583 600.
  • 30
    Lasser-Ross N, Ross W, Yarom Y. Activity-dependent [Ca2+]i changes in guinea pig vagal motoneurons: Relationship to the slow afterhyperpolarization. J. Neurophysiol. 1997; 78: 825 34.
  • 31
    Irving M, Maylie J, Sizto NL, Chandler WK. Intracellular diffusion in the presence of mobile buffers. Application to proton movement in muscle. Biophys. J. 1990; 57: 717 21.
  • 32
    Schwindt PC, Spain WJ, Crill WE. Effects of intracellular calcium chelation on voltage-dependent and calcium-dependent currents in cat neocortical neurons. Neuroscience 1992; 47: 571 8.
  • 33
    Jobling P, McLachlan EM, Sah P. Calcium induced calcium release is involved in the afterhyperpolarization in one class of guinea-pig sympathetic neurone. J. Auton. Nerv. Syst. 1993; 42: 251 7.
  • 34
    Tanabe M, Gahwiler BH, Gerber U. L-Type Ca2+ channels mediate the slow Ca2+-dependent afterhyperpolarization current in rat CA3 pyramidal cells in vitro. J. Neurophysiol. 1998; 80: 2268 73.
  • 35
    Moore KA, Cohen AS, Kao JPY, Weinreich D. Ca2+-induced Ca2+ release mediates a slow post-spike hyperpolarization in rabbit vagal afferent neurons. J. Neurophysiol. 1998; 79: 688 94.
  • 36
    Schwindt PC, Spain WJ, Crill WE. Calcium-dependent potassium currents in neurones from cat sensorimotor cortex. J. Neurophysiol. 1992; 67: 216 26.
  • 37
    Sodickson DL & Bean BP. GABAB receptor-activated inwardly rectifying potassium current in dissociated hippocampal CA3 neurons. J. Neurosci. 1996; 16: 6374 85.
  • 38
    Cloues RK, Tavalin SJ, Marrion NV. β-Adrenergic stimulation selectively inhibits long-lasting L-type calcium channel facilitation in hippocampal pyramidal neurons. J. Neurosci. 1997; 7: 6493 503.
  • 39
    Marrion NV & Tavalin SJ. Selective activation of Ca2+-activated K+ channels by co-localised Ca2+ channels in hippocampal neurons. Nature 1998; 395: 900 5.
  • 40
    Hocherman SD, Werman R, Yarom Y. An analysis of the long-lasting after-hyperpolarization of guinea-pig vagal motoneurones. J. Physiol. 1992; 456: 325 49.
  • 41
    Sah P. Kinetic properties of a slow apamin insensitive Ca2+ activated K+ current in guinea pig vagal neurones. J. Neurophysiol. 1993; 69: 361 6.
  • 42
    Hernandez-Cruz A, Sala F, Adams PR. Subcellular calcium transients visualized by confocal microscopy in a voltage clamped vertebrate neuron. Science 1990; 247: 858 62.
  • 43
    Nowycky MC & Pinter MJ. Time course of calcium and calcium-bound buffers following calcium influx in a model cell. Biophys. J. 1993; 64: 77 91.
  • 44
    Roberts WM, Jacobs RA, Hudspeth AJ. Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones. J. Neurosci. 1990; 10: 3664 84.
  • 45
    Roberts WM. Spatial calcium buffering in saccular hair cells. Nature 1993; 363: 74 6.
  • 46
    Robitaille RP, Garcia ML, Kaczorowski GJ, Charlton MP. Functional colocalisation of calcium can calcium-gated potassium channels in control of transmitter release. Neuron 1993; 11: 645 566.
  • 47
    Wisgirda ME & Dryer SE. Functional dependence of Ca2+-activated K+ currents on L- and N-type channels: Differences between chicken sympathetic and parasympathetic neurons suggest different regulatory mechanisms Proc. Natl Acad. Sci. USA 1994; 91: 2858 62.
  • 48
    Dunlap K, Luebke JI, Turner TJ. Exocytotic Ca2+ channels in mammalian central neurons. Trends Neurosci. 1995; 18: 89 98.
  • 49
    Mochida S & Kobayashi H. Effects of Ca antagonists on the action potential and their relationship to the muscarinic ACh actions in isolated sympathetic neurons of rabbits Neurosci. Lett. 1986; 72: 205 10.
  • 50
    Viana F, Bayliss DA, Berger AJ. Multiple potassium conductances and their role in action potential repolarization and repetitive firing behavior of neonatal rat hypoglossal motoneurons. J. Neurophysiol. 1993; 69: 2150 63.
  • 51
    Sah P. Properties of channels mediating the apamin-insensitive afterhyperpolarization in vagal motoneurons. J. Neurophysiol. 1995; 74: 1772 6.
  • 52
    Davies PJ, Ireland DR, McLachlan EM. Sources of Ca2+ for different Ca(2+)-activated K+ conductances in neurones of the rat superior cervical ganglion. J. Physiol. 1996; 495: 353 66.
  • 53
    Callister RJ, Keast J, Sah P. Ca2+-activated K+-channels in rat otic ganglion cells: Role of calcium entry via Ca2+-channels and nicotinic receptors. J. Physiol. 1997; 500: 571 82.
  • 54
    Kobayashi M, Inoue I, Matsuo R et al. Role of calcium conductances on spike afterpotentials in rat trigeminal motorneurons. J. Neurophysiol. 1997; 77: 3273 83.
  • 55
    Williams S, Serafin M, Bernheim L. Distinct contributions of high- and low-voltage-activated calcium currents to afterhyperpolarizations in cholinergic nucleus basalis neurons of the guinea pig. J. Neurosci. 1997; 17: 7307 15.
  • 56
    Ireland DR, Davies PJ, McLachlan EM. The role of N-type Ca2+ channels in regulating excitability of guinea-pig sympathetic neurones. J. Auton. Nerv. Syst 1998; 73: 109 14.
  • 57
    Wikström MA & El Manira A. Calcium influx through N- and P/Q-type channels activate apamin-sensitive calcium-dependent potassium channels generating the late afterhyperpolarization in Lamprey spinal neurons. Eur. J. Neurosci. 1998; 10: 1528 32.
  • 58
    Pineda JC, Galarraga E, Bargas J, Christancho M, Aceves J. Charybdotoxin and apamin sensitivity of the calcium-dependent repolarization and the afterhyperpolarization in neostriatal neurons. J. Neurophysiol. 1992; 68: 287 94.
  • 59
    Cox DH, Cui J, Aldrich RW. Separation of gating properties from permeation and block in mslo large conductance Ca-activated K+ channels. J. Gen. Physiol. 1997; 109: 633 46.
  • 60
    Kunze WAA, Bornstein JC, Furness JB, Hendriks R, Stephenson DSH. Charybdotoxin and iberiotoxin but not apamin abolish the slow after-hyperpolarisation in myenteric plexus neurons. Pflügers Arch. 1994; 428: 300 6.
  • 61
    Hanani M & Lasser-Ross N. Activity-dependent changes in intra- cellular calcium in myenteric neurons. Am. J. Physiol. 1997; 273: G1359 63.
  • 62
    Engel J, Schultens HA, Schild D. Small conductance potassium channels cause an activity dependent spike frequency adaptation and make the transfer function of neurons logarithmic. Biophys. J. 1999; 76: 1310 19.
  • 63
    Madison DV & Nicoll RA. Control of repetitive discharge of rat CA1 pyramidal neurones in vitro. J. Physiol. 1984; 354: 319 31.
  • 64
    Cassell JF, Clark AL, McLachlan EM. Characteristics of phasic and tonic sympathetic ganglion cells of the guinea pig. J. Physiol. 1986; 372: 457 83.
  • 65
    Nicoll RA. The coupling of neurotransmitter receptors to ion channels in the brain. Science 1988; 241: 545 51.
  • 66
    Sah P. Different calcium channels are coupled to potassium channels with distinct physiological roles in vagal neurons Proc. R. Soc. Lond. B 1995; 260: 105 11.
  • 67
    Higashi H, Sugita S, Matsunari S, Nishi S. Calcium-dependent potentials with different sensitivities to calcium agonists and antagonists in guinea-pig hippocampal neurons. Neuroscience 1990; 34: 35 47.
  • 68
    Umemiya M & Berger AJ. Properties and function of low- and high- voltage-activated Ca2+ channels in hypoglossal motorneurons. J. Neurophysiol. 1994; 14: 5652 60.
  • 69
    Brock JA & Cunnane TC. Effects of Ca2+ and K+ channel blockers on nerve impulses recorded from postganglionic sympathetic nerve terminals. J. Physiol. 1995; 489: 389 402.
  • 70
    Davies PJ, Ireland DR, Martinez-Pinna J, McLachlan EM. Electrophysiological roles of L-type channels in different classes of guinea-pig sympathetic neuron. J. Neurophysiol. 1999; 82: 818 28.