SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Delp MD, Laughlin MH. Regulation of skeletal muscle perfusion during exercise. Acta Physiol. Scand. 1998; 162: 41119.
  • 2
    Hobbs SF, McCloskey DI. Effects of blood pressure on force production in cat and human muscle. J. Appl. Physiol. 1987; 63: 8349.
  • 3
    Drayer JI, Weber MA, Nakamura DK. Automated ambulatory blood pressure monitoring: A study in age-matched normotensive and hypertensive men. Am. Heart J. 1985; 109: 13348.
  • 4
    Jänig W, McLachlan EM. Specialized functional pathways are the building blocks of the autonomic nervous system. J. Auton. Nerv. Syst. 1992; 41: 313.
  • 5
    Kirchheim HR. Systemic arterial baroreceptor reflexes. Physiol. Rev. 1976; 56: 10076.
  • 6
    Guyenet PG. Role of the ventral medulla oblongata in blood pressure regulation. In: Loewy AD, Spyer KM (eds). Central Regulation of Autonomic Functions. Oxford University Press, New York. 1990; 145–67.
  • 7
    Dampney RAL. Functional organization of central pathways regulating the cardiovascular system. Physiol. Rev. 1994; 74: 32364.
  • 8
    Li Y-W, Dampney RAL. Expression of fos-like protein in brain following sustained hypertension and hypotension in conscious rabbits. Neuroscience 1994; 61: 61334.
  • 9
    Polson JW, Potts PD, Li Y-W, Dampney RAL. Fos expression in neurons projecting to the pressor region in the rostral ventrolateral medulla after sustained hypertension in conscious rabbits. Neuroscience 1995; 67: 10723.DOI: 10.1016/0306-4522(95)00034-g
  • 10
    Potts PD, Polson JW, Hirooka Y, Dampney RAL. Effects of sinoaortic denervation on Fos expression evoked by hypertension and hypotension in conscious rabbits. Neuroscience 1997; 77: 50320.
  • 11
    Horiuchi J, Potts PD, Polson JW, Dampney RAL. Distribution of neurons projecting to the rostral ventrolateral medullary pressor region that are activated by sustained hypotension. Neuroscience 1999; 8: 131929.
  • 12
    Blessing WW. Arterial pressure and blood flow to the tissues. In: The Lower Brainstem and Bodily Homeostasis. Oxford University Press, New York. 1997; 165–268.
  • 13
    Sun MK. Pharmacology of reticulospinal vasomotor neurons in cardiovascular regulation. Pharmacol. Rev. 1996; 48: 46594.
  • 14
    Dampney RAL, Hirooka Y, Potts PD, Head GA. Functions of angiotensin peptides in the rostral ventrolateral medulla. Clin. Exp. Pharmacol. Physiol. 1996; 23 (Suppl.): S105–11.
  • 15
    Allen AM, Moeller I, Jenkins TA, Zhuo J, Aldred GP, Chai SY. Angiotensin receptors in the nervous system. Brain Res. Bull. 1998; 47: 1728.
  • 16
    Dampney RAL, Tagawa T, Horiuchi Potts PD, Fontes W, Polson JW. What drives the tonic activity of presympathetic neurons in the rostral ventrolateral medulla? Clin. Exp. Pharmacol. Physiol. 2000; 27: 1049–53.
  • 17
    Dampney RAL, Blessing WW, Tan E. Origin of tonic GABAergic inputs to vasopressor neurons in the subretrofacial nucleus of the rabbit. J. Auton. Nerv. Syst. 1988; 24: 22739.
  • 18
    Coleman MJ, Dampney RAL. Sympathoinhibition evoked from the caudal midline medulla is mediated by GABA receptors in the rostral VLM. Am. J. Physiol. 1998; 274: R31823.
  • 19
    Guyenet PG, Koshiya N. Working model of the sympathetic chemoreflex in rats. Clin. Exp. Hypertens. 1995; 17: 16779.
  • 20
    Hirooka Y, Polson JW, Potts PD, Dampney RAL. Hypoxia-induced Fos expression in neurons projecting to the pressor region in the rostral ventrolateral medulla. Neuroscience 1997; 80: 120924.DOI: 10.1016/s0306-4522(97)00111-5
  • 21
    Koshiya N, Guyenet PG. A5 noradrenergic neurons and the carotid sympathetic chemoreflex. Am. J. Physiol. 1994; 267: R51926.
  • 22
    O’Hagan KP, Casey SM, Clifford PS. Muscle chemoreflex increases renal sympathetic nerve activity during exercise. J. Appl. Physiol. 1997; 82: 181825.
  • 23
    Goodwin GM, McCloskey DI, Mitchell JH. Cardiovascular and respiratory responses to changes in central command during isometric exercise at constant muscle tension. J. Physiol. 1972; 226: 17390.
  • 24
    Gandevia SC, Killian K, McKenzie DK et al. Respiratory sensations, cardiovascular control, kinaesthesia and transcranial stimulation during paralysis in humans. J. Physiol. 1993; 470: 85107.
  • 25
    Kramer JM, Plowey ED, Beatty JA, Little HR, Waldrop TG. Hypothalamus, hypertension, and exercise. Brain Res. Bull. 2000; 53: 77–85.
  • 26
    Hilton SM. Ways of viewing the central nervous control of the circulation: Old and new. Brain Res. 1975; 87: 21319.
  • 27
    Davisson RL, Johnson AK, Lewis SJ. Nitrosyl factors mediate active neurogenic hindquarters vasodilation in the conscious rat. Hypertension 1994; 23: 9626.
  • 28
    Edwards CM, Marshall JM, Pugh M. Cardiovascular responses evoked by mild cool stimuli in primary Raynaud’s disease. The role of endothelin. Clin. Sci. 1999; 96: 57788.
  • 29
    Schadt JC, Hasser EM. Hemodynamic effects of acute stressors in the conscious rabbit. Am. J. Physiol. 1998; 274: R81421.
  • 30
    DiMicco JA, Stotz-Potter EH, Monroe AJ, Morin SM. Role of the dorsomedial hypothalamus in the cardiovascular response to stress. Clin. Exp. Pharmacol. Physiol. 1996; 23: 1716.
  • 31
    Stotz-Potter EH, Willis LR, DiMicco JA. Muscimol acts in dorsomedial but not paraventricular hypothalamic nucleus to suppress cardiovascular effects of stress. J. Neurosci. 1996; 16: 11739.
  • 32
    DiMicco JA, Soltis RP, Anderson JJ, Wible JH. Hypothalamic mechanisms and the cardiovascular response to stress. In: Kunos G, Ciriello J (eds). Central Neural Mechanisms in Cardiovascular Regulation, Vol. 2. Birkhaüser, Boston. 1991; 52–79.
  • 33
    Sanders SK, Shekhar A. Blockade of GABAA receptors in the region of the anterior basolateral amygdala of rats elicits increases in heart rate and blood pressure. Brain Res. 1991; 576: 10110.
  • 34
    Soltis RP, Cook JC, Gregg AE, Stratton JM, Flickinger KA. EAA receptors in the dorsomedial hypothalamic area mediate the cardiovascular response to activation of the amygdala. Am. J. Physiol. 1998; 275: R62431.
  • 35
    Fontes MAP, Tagawa T, Polson JW, Cavanagh S-J, Dampney RAL. Descending pathways mediating cardiovascular response from the dorsomedial hypothalamic nucleus. Am. J. Physiol. 2001; 280: H2891–901.
  • 36
    Yu YH, Blessing WW. Cutaneous vasoconstriction in conscious rabbits during alerting responses detected by hippocampal theta-rhythm. Am. J. Physiol. 1997; 272: R20816.
  • 37
    Yu YH, Blessing WW. Amygdala co-ordinates sudden falls in ear pinna blood flow in response to unconditioned salient stimuli in conscious rabbits. Neuroscience 1999; 93: 13541.DOI: 10.1016/s0306-4522(99)00097-4
  • 38
    Ludbrook J. Reflex control of blood pressure during exercise. Annu. Rev. Physiol. 1983; 45: 15568.
  • 39
    Spyer KM. Central nervous mechanisms contributing to cardiovascular control. J. Physiol. 1994; 474: 119.
  • 40
    Brooks VL, Osborn JW. Hormonal–sympathetic interactions in long-term regulation of arterial pressure: An hypothesis. Am. J. Physiol. 1995; 268: R134358.
  • 41
    Goldsmith SR. Angiotensin II and sympathoactivation in heart failure. J. Card. Fail. 1999; 5: 13945.
  • 42
    Liu JL, Zucker IH. Regulation of sympathetic nerve activity in heart failure: A role for nitric oxide and angiotensin II. Circ. Res. 1999; 84: 41723.
  • 43
    Reid IA. Interactions between ANG II, sympathetic nervous system, and baroreceptor reflexes in regulation of blood pressure. Am. J. Physiol. 1992; 262: E76378.
  • 44
    Ferguson AV, Washburn DL. Angiotensin II. A peptidergic neurotransmitter in central autonomic pathways. Prog. Neurobiol. 1998; 54: 16992.
  • 45
    Martin DS, Haywood JR. Reduced GABA inhibition of sympathetic function in renal-wrapped hypertensive rats. Am. J. Physiol. 1998; 275: R15239.
  • 46
    Allen AM. Inhibition of the hypothalamic paraventricular nucleus reduces sympathetic nerve discharge and blood pressure. Proc. Aust. Neurosci. Soc. 2001; 29: 44 (Abstract).
  • 47
    Azar S, Ernsberger P, Livingston S, Azar P, Iwai J. Paraventricular– suprachiasmatic lesions prevent salt-induced hypertension in Dahl rats. Clin. Sci. 1981; 61 (Suppl. 7): S49–51.
  • 48
    Patel KP, Zhang K. Neurohumoral activation in heart failure: Role of paraventricular nucleus. Clin. Exp. Pharmacol. Physiol. 1996; 23: 7226.
  • 49
    Zucker IH, Wang W, Brandle M, Schultz HD, Patel KP. Neural regulation of sympathetic nerve activity in heart failure. Prog. Cardiovasc. Dis. 1995; 37: 397414.
  • 50
    Tagawa T, Dampney RAL. AT1 receptors mediate excitatory inputs to RVLM pressor neurons from hypothalamus. Hypertension 1999; 34: 13017.
  • 51
    Murakami H, Liu JL, Zucker IH. Blockade of AT1 receptors enhances baroreflex control of heart rate in conscious rabbits with heart failure. Am. J. Physiol. 1996; 271: R3039.
  • 52
    Steckelings U, Lebrun C, Qadri F, Veltmar A, Unger T. Role of brain angiotensin in cardiovascular regulation. J. Cardiovasc. Pharmacol. 1992; 19 (Suppl. 6): S72–9.
  • 53
    Peng JF, Phillips MI. Opposite regulation of brain angiotensin type 1 and type 2 receptors in cold-induced hypertension. Regul. Pept. 2001; 97: 91–102.