• 1
    DeArmond SJ, Prusiner SB, Lingappa VR. A Transmembrane form of the prion protein in neurodegenerative disease. Science 1998; 279: 82734.
  • 2
    DeArmond SJ, Qiu Y, Wong K et al. Abnormal plasma membrane properties and functions in prion-infected cell lines. Cold Spring Harb. Symp. Quant. Biol. 1996; 161: 53140.
  • 3
    Wong K, Qiu Y, Hyun W et al. Decreased receptor-mediated calcium response in prion-infected cells correlates with decreased membrane fluidity and IP3 release. Neurology 1999; 47: 74150.
  • 4
    Kopito RR, Sitia R. Aggresomes and Russell bodies: Symptoms of cellular indigestion? EMBO Rep. 2000; 1: 22531.
  • 5
    Kourie JI, Henry CL. Promoters and inhibitors of amyloid formation: Implications for therapeutic strategies against amyloidosis. Croat. Med. J. 2001; 424: 35873.
  • 6
    Salmona M, Forloni G, Diomede L et al. A neurotoxic and gliotrophic fragment of the prion protein increases plasma membrane microviscosity. Neurobiol. Dis. 1997; 4: 4757.DOI: 10.1006/nbdi.1997.0133
  • 7
    Tagliavini F, Forloni G, Bugiani O, Salmona M. Studies on peptide fragments of prion proteins. Adv. Protein Chem. 2001; 57: 171201.
  • 8
    Lehmann S, Harris DA. A mutant prion protein displays an aberrant membrane association when expressed in cultured cells. J. Biol. Chem. 1995; 270: 24 589–97.
  • 9
    Arispe N, Pollard HB, Rojas E. Giant multilevel cation channels formed by Alzheimer disease amyloid beta-protein [AβP-(1–40)] in bilayer membranes. Proc. Natl Acad. Sci. USA 1993; 90: 10 573–7.
  • 10
    Arispe N, Rojas E, Pollard HB. Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: Blockade by tromethamine and aluminum. Proc. Natl Acad. Sci. USA 1993; 90: 56771.
  • 11
    Hirakura Y, Lin MC, Kagan BL. Alzheimer amyloid Aβ1–42 channels: Effects of solvent, pH, and Congo red. J. Neurosci. Res. 1999; 57: 45866.DOI: 10.1002/(sici)1097-4547(19990815)57:4<458::aid-jnr5>;2-w
  • 12
    Lin H, Bhatia R, Lal R. Amyloid β protein forms ion channels: Implications for Alzheimer's disease pathophysiology. FASEB J. 2001; 15: 243344.
  • 13
    Kourie JI, Shorthouse AA. Properties of cytotoxic peptide-formed ion channels. Am. J. Physiol. 2000; 278: C106387.
  • 14
    Bateman A, MacLeod RJ, Lembessis P, Hu J, Esch F, Soloman S. The isolation and characterization of a novel corticostatin/defensin-like peptide from the kidney. J. Biol. Chem. 1996; 271: 10 654–9.
  • 15
    Andersson M, Girard R, Cazenave P. Interaction of NK lysin, a peptide produced by cytolytic lymphocytes, with endotoxin. Infect. Immun. 1999; 67: 2015.
  • 16
    Andersson M, Gunne H, Agerberth B et al. 1NK-lysin, a novel effector peptide of cytotoxic T and NK cells. Structure and cDNA cloning of the porcine form, induction by interleukin 2, antibacterial and antitumour activity. EMBO J. 1995; 14: 161525.
  • 17
    Lin MC, Mirzabekov T, Kagan BL. Channel formation by a neurotoxic prion protein fragment. J. Biol. Chem. 1997; 272: 447.
  • 18
    Prusiner SB. Molecular biology and pathogenesis of prion diseases. Trends Biochem. Sci. 1996; 21: 4827.
  • 19
    Prusiner SB, Scott MR, DeArmond SJ, Cohen FE. Prion protein biology. Cell 1998; 93: 33748.
  • 20
    Arispe N, Pollard HB, Rojas E. Beta-amyloid Ca2+-channel hypothesis for neuronal death in Alzheimer disease. Mol. Cell. Biochem. 1994; 140: 11925.
  • 21
    Arispe N, Pollard HB, Rojas E. Zn2+ interaction with Alzheimer amyloid beta protein calcium channels. Proc. Natl Acad. Sci. USA 1996; 93: 171015.
  • 22
    Pollard HB, Arispe N, Rojas E. Ion channel hypothesis for Alzheimer amyloid peptide neurotoxicity. Cell. Mol. Neurobiol. 1995; 15: 51326.
  • 23
    Pollard HB, Rojas E, Arispe N. A new hypothesis for the mechanism of amyloid toxicity, based on the calcium channel activity of amyloid beta protein (AβP) in phospholipid bilayer membranes. Ann. N.Y. Acad. Sci. 1993; 695: 1658.
  • 24
    Durell SR, Guy HR, Arispe N, Rojas E, Pollard HB. Theoretical models of the ion channel structure of amyloid beta-protein. Biophys. J. 1994; 67: 13745.
  • 25
    Hirakura Y, Kagan BL. Channel formation in the pathogenesis of Alzheimer's disease and other amyloidoses. Einstein. Q. J. Biol. Med. 1999; 16: 1249.
  • 26
    Hirakura Y, Satoh Y, Hirashima N, Suzuki T, Kagan BL, Kirino Y. Membrane perturbation by the neurotoxic Alzheimer amyloid fragment b25–35 requires aggregation and β-sheet formation. Biochem. Mol. Biol. Int. 1998; 46: 78794.
  • 27
    Hirakura Y, Yiu WW, Yamamoto A, Kagan BL. Amyloid peptide channels: Blockade by zinc and inhibition by congo red. Amyloid 2000; 7: 1949.
  • 28
    Kawahara M, Arispe N, Kuroda Y, Rojas E. Alzheimer's disease amyloid β-protein forms Zn2+-sensitive, cation-selective channels across excised membrane patches from hypothalamic neurons. Biophys. J. 1997; 73: 6775.
  • 29
    Kawahara M, Kuroda Y, Arispe N, Rojas E. Alzheimer's disease β-amyloid, human islet amylin, and prion protein fragment evoke intracellular free calcium elevations by a common mechanism in hypothalamic GnRH neuronal cell line. J. Biol. Chem. 2000; 275: 14 077–63.
  • 30
    Kourie JI. Mechanisms of prion-induced modification in membrane transport systems. Chem. Biol. Interact. 2001; 138: 126.
  • 31
    Kourie JI. Mechanisms of amyloid beta protein-induced modification in ion transport systems: Implications for neurodegenerative diseases. Cell. Mol. Neurobiol. 2001; 21: 173213.
  • 32
    Lin H, Zhu YJ, Lal R. Amyloid beta protein (1–40) forms calcium-permeable, Zn2+-sensitive channel in reconstituted lipid vesicles. Biochemistry 1999; 38: 11 189–96.
  • 33
    Bhatia R, Lin H, Lal R. Fresh and globular amyloid beta protein (1–42) induces rapid cellular degeneration: Evidence for AbetaP channel-mediated cellular toxicity. FASEB J. 2000; 14: 123343.
  • 34
    Rhee SK, Quist AP, Lal R. Amyloid beta protein-(1–42) forms calcium-permeable, Zn2+-sensitive channel. J. Biol. Chem. 1998; 273: 13 379–82.
  • 35
    Zhu YJ, Lin H, Lal R. Fresh and nonfibrillar amyloid beta protein (1–40) induces rapid cellular degeneration in aged human fibroblasts: Evidence for AbetaP-channel-mediated cellular toxicity. FASEB J. 2000; 14: 124454.
  • 36
    Onaderra M, Mancheno JM, Gasset M et al. Translocation of alpha-sarcin across the lipid bilayer of asolectin vesicles. Biochem. J. 1993; 295: 2215.
  • 37
    Gasset M, Mancheno JM, Lacadena J, Martinez del Pozo A, Onaderra M, Gavilanes JG. Spectroscopic characterization of the alkylated alpha-sarcin cytotoxin. Analysis of the structural requirements for the protein–lipid bilayer hydrophobic interaction. Biochim. Biophys. Acta 1995; 1252: 4352.
  • 38
    Mancheno JM, Gasset M, Lacadena J, Martinez del Pozo A, Onaderra M, Gavilanes JG. Predictive study of the conformation of the cytotoxic protein alpha-sarcin: A structural model to explain alpha-sarcin–membrane interaction. J. Theor. Biol. 1995; 172: 25967.
  • 39
    Morillas M, Vanik DL, Surewicz WK. On the mechanism of alpha-helix to beta-sheet transition in the recombinant prion protein. Biochemistry 2001; 40: 69827.
  • 40
    D'Silva PR, Lala AK. Organization of diphtheria toxin in membranes. A hydrophobic photolabeling study. J. Biol. Chem. 2000; 275: 11 771–7.
  • 41
    D'Silva PR, Lala AK. Unfolding of diphtheria toxin. Identification of hydrophobic sites exposed on lowering of pH by photolabeling. J. Biol. Chem. 1998; 273: 16 216–22.
  • 42
    Cheetham JJ, Hilfiker S, Benfenati F, Weber T, Greengard P, Czernik AJ. Identification of synapsin I peptides that insert into lipid membranes. Biochem. J. 2001; 354: 5766.
  • 43
    Chung H, Brazil MI, Soe TT, Maxfield FR. Uptake, degradation, and release of fibrillar and soluble forms of Alzheimer's amyloid beta-peptide by microglial cells. J. Biol. Chem. 1999; 274: 32 301–8.
  • 44
    Paresce DM, Chung H, Maxfield FR. Slow degradation of aggregates of the Alzheimer's disease amyloid beta-protein by microglial cells. J. Biol. Chem. 1997; 272: 29 390–7.
  • 45
    Bechinger B. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim. Biophys. Acta 1999; 1462: 15783.
  • 46
    Schibli DJ, Hwang PM, Vogel HJ. Structure of the antimicrobial peptide tritrpticin bound to micelles: A distinct membrane-bound peptide fold. Biochemistry 1999; 38: 16 749–55.
  • 47
    Tossi A, Sandri L, Giangaspero A. Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 2000; 55: 430.
  • 48
    Czajkowsky DM, Iwamoto H, Cover TL, Shao Z. The vacuolating toxin from Helicobacter pylori forms hexameric pores in lipid bilayers at low pH. Proc. Natl Acad. Sci. USA 1999; 96: 20016.
  • 49
    Tateishi J, Kitamoto T, Doh-ura K et al. Helicobacter pylori vacuolating toxin forms anion-selective channels in planar lipid bilayers. Possible implications for the mechanism of cellular vacuolation. Biophys. J. 1999; 76: 14019.
  • 50
    Tombola F, Del Giudice G, Papini E, Zoratti M. Blockers of VacA provide insights into the structure of the pore. Biophys. J. 2000; 79: 86373.
  • 51
    Szabo I, Brutsche S, Tombola F et al. Formation of anion-selective channels in the cell plasma membrane by the toxin VacA of Helicobacter pylori is required for its biological activity. EMBO J. 1999; 18: 551727.
  • 52
    Shai Y, Oren Z. From ‘carpet’ mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides 2001; 22: 162941.DOI: 10.1016/s0196-9781(01)00498-3
  • 53
    Fujii G. To fuse or not to fuse: The effects of electrostatic interactions, hydrophobic forces, and structural amphipathicity on protein-mediated membrane destabilization. Adv. Drug Deliv. Rev. 1999; 38: 25777.
  • 54
    Pike CJ, Burdick D, Walencewicz AJ, Glabe CG, Cotman CW. Neurodegeneration induced by beta-amyloid peptides in vitro: The role of peptide assembly state. J. Neurosci. 1993; 13: 167687.
  • 55
    Pike CJ, Walencewicz-Wasserman AJ, Kosmoski J, Cribbs DH, Glabe CG, Cotman CW. Structure–activity analyses of beta-amyloid peptides: Contributions of the beta 25–35 region to aggregation and neurotoxicity. J. Neurochem. 1995; 64: 25365.
  • 56
    Kanaori K, Nosaka AY. Characterization of human calcitonin fibrillation in aqueous urea solution by 1H NMR spectroscopy. Biochemistry 1996; 35: 12 671–6.
  • 57
    Motta A, Amodeo P, Fucile P, Castiglione Morelli MA, Bremnes B, Bakke O. A new triple-stranded alpha-helical bundle in solution: The assembling of the cytosolic tail of MHC-associated invariant chain. Structure 1997; 5: 145364.
  • 58
    Motta A, Andreotti G, Amodeo P, Strazzullo G, Castiglione Morelli MA. Solution structure of human calcitonin in membrane-mimetic environment: The role of the amphipathic helix. Proteins 1998; 32: 31423.DOI: 10.1002/(sici)1097-0134(19980815)32:3<314::aid-prot7>;2-j
  • 59
    Nakamuta H, Kohno T, Ichikawa M, Hoshino T, Watabe K, Koida M. Plasma level monitoring of nasal salmon calcitonin in the rat by a heterogeneous two-site enzyme immunoassay. J. Clin. Lab. Anal. 1997; 11: 12931.DOI: 10.1002/(sici)1098-2825(1997)11:3<129::aid-jcla2>;2-5
  • 60
    Dowling W, Denisova E, LaMonica R, Mackow ER. Selective membrane permeabilization by the rotavirus VP5* protein is abrogated by mutations in an internal hydrophobic domain. J. Virol. 2000; 74: 636876.
  • 61
    Juvvadi P, Vunnam S, Yoo B, Merrifield RB. Structure–activity studies of normal and retro pig cecropin–melittin hybrids. J. Pept. Res. 1999; 53: 24451.
  • 62
    Oren Z, Shai Y. Selective lysis of bacteria but not mammalian cells by diastereomers of melittin: Structure–function study. Biochemistry 1997; 36: 182635.
  • 63
    Blondelle SE, Houghten RA. Design of model amphipathic peptides having potent antimicrobial activities. Biochemistry 1992; 31: 12 688–94.
  • 64
    Jobling MF, Stewart LR, White AR et al. The hydrophobic core sequence modulates the neurotoxic and secondary structure properties of the prion peptide J. Neurochem. 1999; 73: 10626.
  • 65
    Hilbich C, Kisters-Woike B, Reed J, Masters CL, Beyreuther K. Substitutions of hydrophobic amino acids reduce the amyloidogenicity of Alzheimer's disease beta A4 peptides. J. Mol. Biol. 1992; 228: 46073.
  • 66
    Barrow CJ, Zagorski MG. Solution structures of beta peptide and its constituent fragments: Relation to amyloid deposition. Science 1991; 253: 17982.
  • 67
    Malovrh P, Barlic A, Podlesek Z, MaCek P, Menestrina G, Anderluh G. Structure–function studies of tryptophan mutants of equinatoxin II, a sea anemone pore-forming protein. Biochem. J. 2000; 346: 22332.DOI: 10.1042/0264-6021:3460223
  • 68
    Anderluh G, Pungercar J, Krizaj I, Strukelj B, Gubensek F, Macek P. N-Terminal truncation mutagenesis of equinatoxin II, a pore-forming protein from the sea anemone Actinia equina. Protein Eng. 1997; 10: 7515.
  • 69
    Anderluh G, Barlic A, Podlesek Z et al. Cysteine-scanning mutagenesis of an eukaryotic pore-forming toxin from sea anemone: Topology in lipid membranes. Eur. J. Biochem. 1999; 263: 12836.
  • 70
    Ohmori N, Niidome T, Kiyota T et al. Importance of hydrophobic region in amphipathic structures of alpha-helical peptides for their gene transfer-ability into cells. Biochem. Biophys. Res. Commun. 1998; 245: 25965.
  • 71
    Dumas F, Lebrun MC, Tocanne JF. Is the protein/lipid hydrophobic matching principle relevant to membrane organization and functions? FEBS Lett. 1999; 458: 2717.
  • 72
    Seelig A, Blatter XL, Frentzel A, Isenberg G. Phospholipid binding of synthetic talin peptides provides evidence for an intrinsic membrane anchor of talin. J. Biol. Chem. 2000; 275: 17 954–61.
  • 73
    De Planque MR, Greathouse DV, Koeppe 2Nd RE, Schafer H, Marsh D, Killian JA. Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane alpha-helical peptides and gramicidin A. Biochemistry 1998; 37: 933345.
  • 74
    Mukherjee S, Maxfield FR. Role of membrane organization and membrane domains in endocytic lipid trafficking. Traffic 2000; 1: 20311.DOI: 10.1034/j.1600-0854.2000.010302.x
  • 75
    Ostolaza H, Bakas L, Goni FM. Balance of electrostatic and hydrophobic interactions in the lysis of model membranes by E. coli alpha-haemolysin. J. Membr. Biol. 1997; 158: 13745.
  • 76
    Durrer P, Gaudin Y, Ruigrok RW, Graf R, Brunner J. Photolabeling identifies a putative fusion domain in the envelope glycoprotein of rabies and vesicular stomatitis viruses. J. Biol. Chem. 1995; 270: 17 575–81.
  • 77
    Skerlavaj B, Benincasa M, Risso A, Zanetti M, Gennaro R. SMAP-29: A potent antibacterial and antifungal peptide from sheep leukocytes. FEBS Lett. 1999; 463: 5862.
  • 78
    Dempsey CE. The actions of melittin on membranes. Biochim. Biophys. Acta 1990; 1031: 14361.
  • 79
    Epand RM, Vogel HJ. Diversity of antimicrobial peptides and their mechanisms of action. Biochim. Biophys. Acta 1999; 1462: 1128.
  • 80
    Small DH, Mok SS, Bornstein JC. 1 Alzheimer's disease and Abeta toxicity: From top to bottom. Nat. Rev. Neurosci. 2001; 2: 5958.
  • 81
    Kourie JI, Culverson A. Prion peptide fragment PrP[106–126] forms distinct cation channel types. J. Neurosci. Res. 2000; 62: 12033.
  • 82
    Calero M, Rostagno A, Matsubara E, Zlokovic B, Frangione B, Ghiso J. Apolipoprotein J (clusterin) and Alzheimer's disease. Microsc. Res. Techn. 2000; 50: 30515.
  • 83
    Duguid JR, Bohmont CW, Liu NG, Tourtellotte WW. Changes in brain gene expression shared by scrapie and Alzheimer disease. Proc. Natl Acad. Sci. USA 1989; 86: 72604.
  • 84
    Grassilli E, Bettuzzi S, Troiano L et al. SGP-2, apoptosis, and aging. Ann. N.Y. Acad. Sci. 1992; 663: 4714.