SEARCH

SEARCH BY CITATION

References

  • 1
    Ganguly A. Aldosterone. In: Fray JCS (ed.). The Endocrine System, Vol. III. Endocrine Regulation of Water and Electrolyte Balance. Oxford University Press, New York. 2000; 156227.
  • 2
    White PC, Curnow KM, Pascoe L. Disorders of steroid 11β-hydroxylase isozymes. Endocr. Rev. 1994; 15: 42138.
  • 3
    Wehling M. Nongenomic aldosterone effects: The cell membrane as a specific target of mineralocorticoid action. Steroids 1995; 60: 1536.
  • 4
    Brilla CG, Weber KT. Mineralocorticoid excess, dietary sodium, and myocardial fibrosis. J. Lab. Clin. Med. 1992; 120: 893901.
  • 5
    Funder JW. Steroids, hypertension and cardiac fibrosis. Blood Press. 1995; 4: 3942.
  • 6
    Pitt B, Zannad F, Remme WJ et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N. Engl. J. Med. 1999; 341: 70916.
  • 7
    Wehling M, Spes CH, Win N et al. Rapid cardiovascular action of aldosterone in man. J. Clin. Endocrinol. Metab. 1998; 83: 351722.
  • 8
    Gómez-Sánchez EP. Intracerebroventricular infusion of aldosterone induces hypertension in rats. Endocrinology 1986; 118: 81923.
  • 9
    Gómez-Sánchez EP, Fort C, Gómez-Sánchez CE. Intracerebroventricular infusions of RU28318 blocks aldosterone-salt hypertension. Am. J. Physiol. 1990; 258: E4824.
  • 10
    Gómez-Sánchez EP, Venkataraman MT, Thwaites D, Fort C. ICV infusion of corticosterone antagonizes ICV-aldosterone hypertension. Am. J. Physiol. 1990; 258: E64953.
  • 11
    Van den Berg DTWM, De Kloet ER, Van Dijken HH, De Jong L. Differential central effects of mineralocorticoid and glucocorticoid agonists and antagonists on blood pressure. Endocrinology 1990; 126: 11824.
  • 12
    Ueda K, Okamura N, Hirai M et al. Human P-glycoprotein transports cortisol, aldosterone and dexamethasone, but not progesterone. J. Biol. Chem. 1992; 267: 24 248–52.
  • 13
    Karssen AM, Meijer OC, Van Der Sant ICJ et al. Multidrug resistance P-glycoprotein hampers the access of cortisol but not of corticosterone to mouse and human brain. Endocrinology 2001; 142: 268694.
  • 14
    Reul JMHM, De Kloet ER. Anatomical resolution of two types of corticosterone receptor sites in rat brain with in vitro autoradiography and computerized image analysis. J. Steroid Biochem. 1986; 24: 26972.
  • 15
    Agarwal MK, Mirshahi F, Mirshahi M, Rostene W. Immunochemical detection of the mineralocorticoid receptor in rat brain. Neuroendocrinology 1993; 58: 57580.
  • 16
    Diaz R, Brown RW, Seckl JR. Distinct ontogeny of glucocorticoid and mineralocorticoid receptor and 11β-hydroxysteroid dehydrogenase types I and II mRNAs in the fetal rat brain suggest a complex control of glucocorticoid actions. J. Neurosci. 1998; 18: 257080.
  • 17
    Robson AC, Leckie CM, Seckl JR, Holmes MC. 11β-Hydroxysteroid dehydrogenase type 2 in the postnatal and adult rat brain. Mol. Brain Res. 1998; 61: 110.
  • 18
    Sakai RR, Ma LY, Zhang DM, McEwen BS, Fluharty SJ. Intracerebral administration of mineralocorticoid receptor antisense oligonucleotides attenuate adrenal steroid-induced salt appetite in rats. Neuroendocrinology 1996; 64: 4259.
  • 19
    Ajilore OA, Sapolsky RM. In vivo characterization of 11β-hydroxysteroid dehydrogenase in rat hippocampus using glucocorticoid neuroendangerment as an endpoint. Neuroendocrinology 1999; 69: 13844.
  • 20
    Seckl JR, Walker BR. Minireview. 11β-Hydroxysteroid dehydrogenase type 1: A tissue-specific amplifier of glucocorticoid action. Endocrinology 2001; 142: 13716.
  • 21
    Joels M, De Kloet ER. Mineralocorticoid and glucocorticoid receptors in the brain. Implications for ion permeability and transmitter systems. Prog. Neurobiol. 1994; 43: 136.
  • 22
    Reagan LP, McEwen BS. Controversies surrounding glucocorticoid-mediated cell death in the hippocampus. J. Chem. Neuroanat. 1997; 13: 14967.
  • 23
    Leverenz JB, Wilkinson CW, Wamble M et al. Effect of chronic high-dose exogenous cortisol on hippocampal neuronal number in aged nonhuman primates. J. Neurosci. 1999; 19: 235661.
  • 24
    Joels M. Steroid hormones and excitability in the mammalian brain. Front. Neuroendocrinol. 1997; 18: 248.
  • 25
    Rodriguez JJ, Montaron MF, Petry KG et al. Complex regulation of the expression of the polysialylated form of the neuronal cell adhesion molecule by glucocorticoids in the rat hippocampus. Eur. J. Neurosci. 1998; 10: 29943006.
  • 26
    Gould E, Woolley CS, McEwen BS. Short-term glucocorticoid manipulations affect neuronal morphology and survival in the adult dentate gyrus. Neuroscience 1990; 37: 36775.
  • 27
    Kovács KJ, Makara GB. Corticosterone and dexamethasone act at different brain sites to inhibit adrenalectomy-induced adrenocorticotropin hypersecretion. Brain Res. 1988; 474: 20510.
  • 28
    De Kloet ER, Vreugdenhil E, Oitzl MS, Joels M. Brain corticosteroid receptor balance in health and disease. Endocr. Rev. 1998; 19: 269301.
  • 29
    Meaney MJ, Aitken DH, Van Berkel C, Bhatnagar S, Sapolsky RM. Effect of neonatal handling on age-related impairments associated with the hippocampus. Science 1988; 239: 7668.
  • 30
    Takeda R, Hatakeyama H, Takeda Y et al. Aldosterone biosynthesis and action in vascular cells. Steroids 1995; 60: 1204.
  • 31
    Hatakeyama H, Miyamori I, Takeda Y, Yamamoto H, Mabuchi H. The expression of steroidogenic enzyme genes in human vascular cells. Biochem. Mol. Biol. Int. 1996; 40: 63945.
  • 32
    Hatakeyama H, Miyamori I, Fujita T, Takeda Y, Takeda R, Yamamoto H. Vascular aldosterone. Biosynthesis and a link to angiotensin II-induced hypertrophy of vascular smooth muscle cells. J. Biol. Chem. 1994; 269: 24 316–20.
  • 33
    Samani NJ. Extrarenal renin–angiotensin systems. In: Swales JD (ed.). Textbook of Hypertension. Blackwell Science, Oxford. 1994; 25372.
  • 34
    Takeda Y, Miyamori I, Yoneda T et al. Regulation of aldosterone synthase in human vascular endothelial cells by angiotensin II and adrenocorticotropin. J. Clin. Endocrinol. Metab. 1996; 81: 2797800.
  • 35
    Takeda Y, Miyamori I, Yoneda T et al. Production of aldosterone in isolated rat blood vessels. Hypertension 1995; 25: 1703.
  • 36
    Silvestre J-S, Robert V, Heymes C et al. Myocardial production of aldosterone and corticosterone in the rat. J. Biol. Chem. 1998; 237: 488391.
  • 37
    Zhang G, Miller WL. The human genome contains only two CYP11B (P450c11) genes. J. Clin. Endocrinol. Metab. 1996; 81: 32546.
  • 38
    Mellon SH, Bair SR, Monis H. P450c11B3 mRNA, transcribed from a third P450c11 gene, is expressed in a tissue-specific, developmentally and hormonally regulated fashion in the rodent adrenal and encodes a protein with both 11-hydroxylase and 18-hydroxylase activities. J. Biol. Chem. 1995; 270: 16439.
  • 39
    Kayes-Wandover KM, White PC. Steroidogenic enzyme gene expression in the human heart. J. Clin. Endocrinol. Metab. 2000; 85: 251925.
  • 40
    Funder JW. Mineralocorticoids and cardiac fibrosis: The decade in press. Clin. Exp. Pharmacol. Physiol. 2001; 28: 10026.
  • 41
    Sheppard KE, Autelitano DJ. 11β-Hydroxysteroid dehydrogenase 1 transforms 11-dehydrocorticosterone into transcriptionally active glucocorticoid in neonatal rat heart. Endocrinology 2002; 143: 198204.
  • 42
    Slight SH, Joseph J, Ganjam VK, Weber KT. Extra-adrenal mineralocorticoids and cardiovascular tissue. J. Mol. Cell. Cardiol. 1999; 31: 117584.
  • 43
    Delcayre C, Silvestre J-S. Aldosterone and the heart: Towards a physiological function? Cardiovasc. Res. 1999; 43: 712.
  • 44
    Mizuno Y, Yoshimura M, Yasue H et al. Aldosterone production is activated in failing ventricle in humans. Circulation 2001; 103: 727.
  • 45
    Young MJ, Clyne CD, Cole TJ, Funder JW. Cardiac steroidogenesis in the normal and failing heart. J. Clin. Endocrinol. Metab. 2001; 86: 51216.
  • 46
    Satoh M, Nakamura M, Saitoh H et al. Aldosterone synthase (CYP11B2) expression and myocardial fibrosis in the failing human heart. Clin. Sci. 2002; 102: 3816.
  • 47
    Silvestre J-S, Heymes C, Robert V et al. Activation of cardiac aldosterone production in rat myocardial infarction. Circulation 1999; 99: 2694701.
  • 48
    Young MJ, Funder JW. The renin–angiotensin–aldosterone system in experimental mineralocorticoid-salt induced cardiac fibrosis. Am. J. Physiol. 1996; 271: E8838.
  • 49
    Robert V, Heymes C, Silvestre J-S, Sabri A, Swynghedauw B, Delcayre C. Angiotensin AT1 receptor subtype as a cardiac target of aldosterone. Hypertension 1999; 33: 9816.
  • 50
    Wu P, Guo Z, Zhang Y et al. Aldosterone overproduction and CYP11B2 mRNA overexpression in vessels of spontaneously hypertensive rats. Horm. Res. 1997; 50: 2831.
  • 51
    Takeda Y, Miyamori I, Inaba S et al. Vascular aldosterone in genetically hypertensive rats. Hypertension 1997; 29: 458.
  • 52
    Baulieu EE, Robel P. Neurosteroids: A new brain function? J. Steroid Biochem. Mol. Biol. 1990; 37: 395403.
  • 53
    Le Goascogne C, Robel P, Gouézou M, Sananès N, Baulieu E-E, Waterman MR. Neurosteroids: Cytochrome P-450scc in rat brain. Science 1987; 237: 121215.
  • 54
    Iwahashi K, Ozaki HS, Tsubaki M, Ohnishi J, Takeuchi Y, Ichikawa Y. Studies of the immunohistochemical and biochemical localization of the cytochrome p-450 (scc)-linked monooxygenase system in the adult rat brain. Biochim. Biophys. Acta 1990; 1035: 1829.
  • 55
    Mellon SH, Deschepper CF. Neurosteroid biosynthesis: Genes for adrenal steroidogenic enzymes are expressed in the brain. Brain Res. 1993; 629: 28392.
  • 56
    Sanne J-L, Krueger KE. Expression of cytochrome P450 side-chain cleavage enzyme and 3β-hydroxysteroid dehydrogenase in the rat central nervous system: A study by polymerase chain reaction and in situ hybridization. J. Neurochem. 1995; 65: 52836.
  • 57
    Jung-Testas I, Hu ZY, Baulieu EE, Robel P. Neurosteroids: Biosynthesis of pregnenolone and progesterone in primary cultures of rat glial cells. Endocrinology 1989; 125: 208391.
  • 58
    Ukena K, Usui M, Kohchi C, Tsutsui K. Cytochrome P450 side-chain cleavage enzyme in the cerebellar Purkinje neuron and its neonatal change in rats. Endocrinology 1998; 139: 13747.
  • 59
    Furukawa A, Miyatake A, Ohnishi T, Ichikawa Y. Steroidogenic acute regulatory protein (StAR) transcripts constitutively expressed in the adult rat central nervous system. Colocalization of StAR, cytochrome P-450 (SCC) (CYPX1A1), and 3β-hydroxysteroid dehydrogenase in the rat brain. J. Neurochem. 1998; 71: 22318.
  • 60
    MacKenzie SM, Lai M, Clark CJ et al. 11β-Hydroxylase and aldosterone synthase expression in fetal rat hippocampal neurons. J. Mol. Endocrinol. 2002; 29: 31925.
  • 61
    Strömstedt M, Waterman MR. Messenger RNAs encoding steroidogenic enzymes are expressed in rodent brain. Mol. Brain Res. 1995; 34: 7588.
  • 62
    MacKenzie SM, Clark CJ, Fraser R, Gómez-Sánchez CE, Connell JMC, Davies E. Expression of 11β-hydroxylase and aldosterone synthase genes in the rat brain. J. Mol. Endocrinol. 2000; 24: 3218.
  • 63
    Watzka M, Bidlingmaier F, Schramm J, Klingmüller D, Stoffel-Wagner B. Sex- and age-specific differences in human brain CYP11A1 mRNA expression. J. Neuroendocrinol. 1999; 11: 9015.
  • 64
    Mellon SH, Kushner JA, Vaisse C. Expression and regulation of adrenodoxin and P450scc mRNA in rodent tissues. DNA Cell Biol. 1991; 10: 33947.
  • 65
    Mensah-Nyagan AG, Do-Rego J-L, Beaujean D, Luu-The V, Pelletier G, Vaudry H. Neurosteroids: Expression of steroidogenic enzymes and regulation of steroid biosynthesis in the central nervous system. Pharmacol. Rev. 1999; 51: 6381.
  • 66
    Guennon R, Fiddes RJ, Gouézou M, Baulieu EE. A key enzyme in the biosynthesis of neurosteroids, 3β-hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase (3β-HSD), is expressed in rat brain. Mol. Brain Res. 1995; 30: 287300.
  • 67
    Ukena K, Kohchi C, Tsutsui K. Expression and activation of 3β-hydroxysteroid dehydrogenase/Δ54-isomerase in the rat Purkinje neuron during neonatal life. Endocrinology 1999; 140: 80513.
  • 68
    Mellon SH, Miller WL. Extraadrenal steroid 21-hydroxylation is not mediated by P450c21. J. Clin. Invest. 1989; 84: 1497502.
  • 69
    Beyenburg S, Watzka M, Clusmann H et al. Messenger RNA of steroid 21-hydroxylase (CYP21) is expressed in the human hippocampus. Neurosci. Lett. 2001; 308: 11114.
  • 70
    Ozaki HS, Iwahashi K, Tsubaki M, Fukui Y, Ichikawa Y, Takeuchi Y. Cytochrome P-45011β in rat brain. J. Neurosci. Res. 1991; 28: 51824.
  • 71
    Gómez-Sánchez CE, Zhou M, Cozza EN, Morita H, Eddleman FC, Gómez-Sánchez EP. Corticosteroid synthesis in the central nervous system. Endocr. Res. 1996; 22: 46370.
  • 72
    Erdmann B, Gerst H, Lippoldt A et al. Expression of cytochrome P450c11 mRNA in the brain of normal and hypertensive transgenic rats. Brain Res. 1996; 733: 7382.
  • 73
    MacKenzie SM, Clark CJ, Ingram MC et al. Corticosteroid production by fetal rat hippocampal neurons. Endocr Res. 2000; 26: 5315.
  • 74
    Gómez-Sánchez CE, Zhou M, Cozza EN, Morita H, Foecking MF, Gómez-Sánchez EP. Aldosterone biosynthesis in the rat brain. Endocrinology 1997; 138: 336973.
  • 75
    Sandeep TC, MacLullich AMJ, Yau JLW et al. 11β-Hydroxysteroid dehydrogenase type 1 (11β HSD1) is expressed in human brain: Inhibition with carbenoxolone improves cognitive function in healthy elderly men. Endocr. Abstr. 2002; 3: OC41 (Abstract).
  • 76
    Johnston JO, Wright CL, Holbert GW. Enzyme-activated inhibitors of steroidal hydroxylases. J. Steroid Biochem. Mol. Biol. 1995; 52: 1734.
  • 77
    Davies E, Holloway CD, Ingram MC et al. Aldosterone excretion rate and blood pressure in essential hypertension are related to polymorphic differences in the aldosterone synthase gene CYP11B2. Hypertension 1999; 33: 7037.